Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's tackle the given inverse trigonometric functions step-by-step and round each result to the nearest degree.
1. Finding [tex]\(\sin^{-1}\left(\frac{2}{3}\right)\)[/tex]:
- We need to determine the angle whose sine is [tex]\(\frac{2}{3}\)[/tex].
- Using a calculator, [tex]\(\sin^{-1}\left(\frac{2}{3}\right)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 41.81 degrees.
- Rounding to the nearest degree, [tex]\(\sin^{-1}\left(\frac{2}{3}\right) \approx 42^{\circ}\)[/tex].
2. Finding [tex]\(\tan^{-1}(4)\)[/tex]:
- We need to determine the angle whose tangent is 4.
- Using a calculator, [tex]\(\tan^{-1}(4)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 75.96 degrees.
- Rounding to the nearest degree, [tex]\(\tan^{-1}(4) \approx 76^{\circ}\)[/tex].
3. Finding [tex]\(\cos^{-1}(0.1)\)[/tex]:
- We need to determine the angle whose cosine is 0.1.
- Using a calculator, [tex]\(\cos^{-1}(0.1)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 84.26 degrees.
- Rounding to the nearest degree, [tex]\(\cos^{-1}(0.1) \approx 84^{\circ}\)[/tex].
Thus, the rounded values of the inverse trigonometric functions to the nearest degree are:
[tex]\[ \begin{array}{l} \sin ^{-1}\left(\frac{2}{3}\right)=42^{\circ} \\ \tan ^{-1}(4)=76^{\circ} \\ \cos ^{-1}(0.1)=84^{\circ} \end{array} \][/tex]
1. Finding [tex]\(\sin^{-1}\left(\frac{2}{3}\right)\)[/tex]:
- We need to determine the angle whose sine is [tex]\(\frac{2}{3}\)[/tex].
- Using a calculator, [tex]\(\sin^{-1}\left(\frac{2}{3}\right)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 41.81 degrees.
- Rounding to the nearest degree, [tex]\(\sin^{-1}\left(\frac{2}{3}\right) \approx 42^{\circ}\)[/tex].
2. Finding [tex]\(\tan^{-1}(4)\)[/tex]:
- We need to determine the angle whose tangent is 4.
- Using a calculator, [tex]\(\tan^{-1}(4)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 75.96 degrees.
- Rounding to the nearest degree, [tex]\(\tan^{-1}(4) \approx 76^{\circ}\)[/tex].
3. Finding [tex]\(\cos^{-1}(0.1)\)[/tex]:
- We need to determine the angle whose cosine is 0.1.
- Using a calculator, [tex]\(\cos^{-1}(0.1)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 84.26 degrees.
- Rounding to the nearest degree, [tex]\(\cos^{-1}(0.1) \approx 84^{\circ}\)[/tex].
Thus, the rounded values of the inverse trigonometric functions to the nearest degree are:
[tex]\[ \begin{array}{l} \sin ^{-1}\left(\frac{2}{3}\right)=42^{\circ} \\ \tan ^{-1}(4)=76^{\circ} \\ \cos ^{-1}(0.1)=84^{\circ} \end{array} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.