Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\(\frac{3}{5}(x-4)+\frac{6}{7}=\frac{1}{7}(x+2)\)[/tex], we can follow these steps:
1. Distribute and simplify both sides:
[tex]\[ \frac{3}{5}(x - 4) + \frac{6}{7} = \frac{1}{7}(x + 2) \][/tex]
Distribute [tex]\(\frac{3}{5}\)[/tex] on the left side:
[tex]\[ \frac{3}{5}x - \frac{3}{5} \cdot 4 + \frac{6}{7} = \frac{3}{5}x - \frac{12}{5} + \frac{6}{7} \][/tex]
Distribute [tex]\(\frac{1}{7}\)[/tex] on the right side:
[tex]\[ \frac{1}{7}x + \frac{1}{7} \cdot 2 = \frac{1}{7}x + \frac{2}{7} \][/tex]
Now we have:
[tex]\[ \frac{3}{5}x - \frac{12}{5} + \frac{6}{7} = \frac{1}{7}x + \frac{2}{7} \][/tex]
2. Combine like terms:
To simplify, it is beneficial to get rid of the fractions by finding a common denominator. The common denominator for 5 and 7 is 35.
Multiply through by 35:
[tex]\[ 35 \left( \frac{3}{5}x - \frac{12}{5} + \frac{6}{7} \right) = 35 \left( \frac{1}{7}x + \frac{2}{7} \right) \][/tex]
Simplifying each term:
[tex]\[ 35 \cdot \frac{3}{5}x = 21x, \quad 35 \cdot \frac{12}{5} = 84, \quad 35 \cdot \frac{6}{7} = 30 \][/tex]
[tex]\[ 35 \cdot \frac{1}{7}x = 5x, \quad 35 \cdot \frac{2}{7} = 10 \][/tex]
So, the equation becomes:
[tex]\[ 21x - 84 + 30 = 5x + 10 \][/tex]
3. Combine like terms and isolate [tex]\(x\)[/tex]:
Simplify the equation:
[tex]\[ 21x - 54 = 5x + 10 \][/tex]
Subtract [tex]\(5x\)[/tex] from both sides:
[tex]\[ 16x - 54 = 10 \][/tex]
Add 54 to both sides:
[tex]\[ 16x = 64 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Divide both sides by 16:
[tex]\[ x = \frac{64}{16} = 4 \][/tex]
Thus, the solution to the equation is:
[tex]\[ x = 4 \][/tex]
1. Distribute and simplify both sides:
[tex]\[ \frac{3}{5}(x - 4) + \frac{6}{7} = \frac{1}{7}(x + 2) \][/tex]
Distribute [tex]\(\frac{3}{5}\)[/tex] on the left side:
[tex]\[ \frac{3}{5}x - \frac{3}{5} \cdot 4 + \frac{6}{7} = \frac{3}{5}x - \frac{12}{5} + \frac{6}{7} \][/tex]
Distribute [tex]\(\frac{1}{7}\)[/tex] on the right side:
[tex]\[ \frac{1}{7}x + \frac{1}{7} \cdot 2 = \frac{1}{7}x + \frac{2}{7} \][/tex]
Now we have:
[tex]\[ \frac{3}{5}x - \frac{12}{5} + \frac{6}{7} = \frac{1}{7}x + \frac{2}{7} \][/tex]
2. Combine like terms:
To simplify, it is beneficial to get rid of the fractions by finding a common denominator. The common denominator for 5 and 7 is 35.
Multiply through by 35:
[tex]\[ 35 \left( \frac{3}{5}x - \frac{12}{5} + \frac{6}{7} \right) = 35 \left( \frac{1}{7}x + \frac{2}{7} \right) \][/tex]
Simplifying each term:
[tex]\[ 35 \cdot \frac{3}{5}x = 21x, \quad 35 \cdot \frac{12}{5} = 84, \quad 35 \cdot \frac{6}{7} = 30 \][/tex]
[tex]\[ 35 \cdot \frac{1}{7}x = 5x, \quad 35 \cdot \frac{2}{7} = 10 \][/tex]
So, the equation becomes:
[tex]\[ 21x - 84 + 30 = 5x + 10 \][/tex]
3. Combine like terms and isolate [tex]\(x\)[/tex]:
Simplify the equation:
[tex]\[ 21x - 54 = 5x + 10 \][/tex]
Subtract [tex]\(5x\)[/tex] from both sides:
[tex]\[ 16x - 54 = 10 \][/tex]
Add 54 to both sides:
[tex]\[ 16x = 64 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Divide both sides by 16:
[tex]\[ x = \frac{64}{16} = 4 \][/tex]
Thus, the solution to the equation is:
[tex]\[ x = 4 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.