Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, let's go through the information given and find the necessary values step-by-step:
1. Find the slope of the line AB:
Given points [tex]\( A (-10, -3) \)[/tex] and [tex]\( B (7, 14) \)[/tex]:
The slope [tex]\( m_{AB} \)[/tex] is calculated as:
[tex]\[ m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{14 - (-3)}{7 - (-10)} = \frac{14 + 3}{7 + 10} = \frac{17}{17} = 1.0 \][/tex]
So, the slope of line AB is [tex]\( 1.0 \)[/tex].
2. Find the slope of the line CD which is perpendicular to AB:
The slope of a line perpendicular to another is the negative reciprocal of the slope of the first line.
Therefore, the slope [tex]\( m_{CD} \)[/tex] is:
[tex]\[ m_{CD} = -\frac{1}{m_{AB}} = -\frac{1}{1.0} = -1.0 \][/tex]
3. Find the equation of the line CD:
The line CD passes through point [tex]\( C (5, 12) \)[/tex]. Using the point-slope form of a line, [tex]\( y = mx + b \)[/tex], we can substitute [tex]\( m_{CD} = -1.0 \)[/tex] and point C into the equation to find the y-intercept [tex]\( b_{CD} \)[/tex]:
The equation of line CD is:
[tex]\[ y = -1.0 \cdot x + b_{CD} \][/tex]
Using point [tex]\( C (5, 12) \)[/tex]:
[tex]\[ 12 = -1.0 \cdot 5 + b_{CD} \][/tex]
[tex]\[ 12 = -5 + b_{CD} \][/tex]
[tex]\[ b_{CD} = 12 + 5 = 17.0 \][/tex]
Thus, the equation of line CD is:
[tex]\[ y = -1.0 \cdot x + 17.0 \][/tex]
4. Find the x-intercept of CD:
The x-intercept occurs when [tex]\( y = 0 \)[/tex]. Set [tex]\( y \)[/tex] to 0 in the equation of line CD and solve for [tex]\( x \)[/tex]:
[tex]\[ 0 = -1.0 \cdot x + 17.0 \][/tex]
[tex]\[ x = \frac{17.0}{1.0} = 17.0 \][/tex]
Therefore, the x-intercept of line CD is [tex]\( 17.0 \)[/tex].
5. Verify that point C (5, 12) lies on line CD:
Since point [tex]\( C \)[/tex] was used to derive the equation of line CD, it indeed lies on line CD. The coordinates of point C are [tex]\( (5, 12) \)[/tex].
Thus, the answers are:
- The x-intercept of [tex]\(\overleftrightarrow{C D}\)[/tex] is [tex]\( 17.0 \)[/tex].
- The point [tex]\((5, 12)\)[/tex] lies on [tex]\(\overleftrightarrow{C D}\)[/tex].
Fill in the blanks accordingly:
- The x-intercept of [tex]\(\overleftrightarrow{C D}\)[/tex] is 17.0.
- The point (5, 12) lies on [tex]\(\overleftrightarrow{C D}\)[/tex].
1. Find the slope of the line AB:
Given points [tex]\( A (-10, -3) \)[/tex] and [tex]\( B (7, 14) \)[/tex]:
The slope [tex]\( m_{AB} \)[/tex] is calculated as:
[tex]\[ m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{14 - (-3)}{7 - (-10)} = \frac{14 + 3}{7 + 10} = \frac{17}{17} = 1.0 \][/tex]
So, the slope of line AB is [tex]\( 1.0 \)[/tex].
2. Find the slope of the line CD which is perpendicular to AB:
The slope of a line perpendicular to another is the negative reciprocal of the slope of the first line.
Therefore, the slope [tex]\( m_{CD} \)[/tex] is:
[tex]\[ m_{CD} = -\frac{1}{m_{AB}} = -\frac{1}{1.0} = -1.0 \][/tex]
3. Find the equation of the line CD:
The line CD passes through point [tex]\( C (5, 12) \)[/tex]. Using the point-slope form of a line, [tex]\( y = mx + b \)[/tex], we can substitute [tex]\( m_{CD} = -1.0 \)[/tex] and point C into the equation to find the y-intercept [tex]\( b_{CD} \)[/tex]:
The equation of line CD is:
[tex]\[ y = -1.0 \cdot x + b_{CD} \][/tex]
Using point [tex]\( C (5, 12) \)[/tex]:
[tex]\[ 12 = -1.0 \cdot 5 + b_{CD} \][/tex]
[tex]\[ 12 = -5 + b_{CD} \][/tex]
[tex]\[ b_{CD} = 12 + 5 = 17.0 \][/tex]
Thus, the equation of line CD is:
[tex]\[ y = -1.0 \cdot x + 17.0 \][/tex]
4. Find the x-intercept of CD:
The x-intercept occurs when [tex]\( y = 0 \)[/tex]. Set [tex]\( y \)[/tex] to 0 in the equation of line CD and solve for [tex]\( x \)[/tex]:
[tex]\[ 0 = -1.0 \cdot x + 17.0 \][/tex]
[tex]\[ x = \frac{17.0}{1.0} = 17.0 \][/tex]
Therefore, the x-intercept of line CD is [tex]\( 17.0 \)[/tex].
5. Verify that point C (5, 12) lies on line CD:
Since point [tex]\( C \)[/tex] was used to derive the equation of line CD, it indeed lies on line CD. The coordinates of point C are [tex]\( (5, 12) \)[/tex].
Thus, the answers are:
- The x-intercept of [tex]\(\overleftrightarrow{C D}\)[/tex] is [tex]\( 17.0 \)[/tex].
- The point [tex]\((5, 12)\)[/tex] lies on [tex]\(\overleftrightarrow{C D}\)[/tex].
Fill in the blanks accordingly:
- The x-intercept of [tex]\(\overleftrightarrow{C D}\)[/tex] is 17.0.
- The point (5, 12) lies on [tex]\(\overleftrightarrow{C D}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.