Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find which function has a phase shift of [tex]\(\frac{\pi}{2}\)[/tex] to the right, we need to analyze each function and calculate the phase shift.
1. Understanding Phase Shift:
The standard form of a sinusoidal function is:
[tex]\[ y = a \sin(bx + c) \][/tex]
The phase shift [tex]\(\phi\)[/tex] of this function is given by:
[tex]\[ \phi = -\frac{c}{b} \][/tex]
A positive value of [tex]\(\phi\)[/tex] indicates a shift to the right, and a negative value indicates a shift to the left.
2. Analyzing Each Function:
Let's break down each option:
A. [tex]\( y = 2 \sin \left(\frac{1}{2} x + \pi\right) \)[/tex]
[tex]\[ \phi = -\frac{\pi}{\frac{1}{2}} = -2\pi \][/tex]
This corresponds to a phase shift of [tex]\(-2\pi\)[/tex] (or [tex]\(2\pi\)[/tex] to the left), not [tex]\(\frac{\pi}{2}\)[/tex] to the right.
B. [tex]\( y = 2 \sin (2 x + \pi) \)[/tex]
[tex]\[ \phi = -\frac{\pi}{2} = -\frac{\pi}{2} \][/tex]
This corresponds to a phase shift of [tex]\(-\frac{\pi}{2}\)[/tex] (or [tex]\(\frac{\pi}{2}\)[/tex] to the left), not to the right.
C. [tex]\( y = 2 \sin \left(x + \frac{\pi}{2}\right) \)[/tex]
[tex]\[ \phi = -\frac{\frac{\pi}{2}}{1} = -\frac{\pi}{2} \][/tex]
This also corresponds to a phase shift of [tex]\(-\frac{\pi}{2}\)[/tex], not [tex]\(\frac{\pi}{2}\)[/tex] to the right.
D. [tex]\( y = 2 \sin (x - \pi) \)[/tex]
[tex]\[ \phi = -\frac{-\pi}{1} = \pi \][/tex]
This corresponds to a phase shift of [tex]\(\pi\)[/tex] to the right, not [tex]\(\frac{\pi}{2}\)[/tex] to the right.
E. [tex]\( y = 2 \sin (2 x - \pi) \)[/tex]
[tex]\[ \phi = -\frac{-\pi}{2} = \frac{\pi}{2} \][/tex]
This corresponds to a phase shift of [tex]\(\frac{\pi}{2}\)[/tex] to the right, which is exactly what we are looking for.
Thus, the correct function with a phase shift of [tex]\(\frac{\pi}{2}\)[/tex] to the right is:
[tex]\[ E. \, y = 2 \sin (2 x - \pi) \][/tex]
So, the function that has a phase shift of [tex]\(\frac{\pi}{2}\)[/tex] to the right corresponds to option E.
1. Understanding Phase Shift:
The standard form of a sinusoidal function is:
[tex]\[ y = a \sin(bx + c) \][/tex]
The phase shift [tex]\(\phi\)[/tex] of this function is given by:
[tex]\[ \phi = -\frac{c}{b} \][/tex]
A positive value of [tex]\(\phi\)[/tex] indicates a shift to the right, and a negative value indicates a shift to the left.
2. Analyzing Each Function:
Let's break down each option:
A. [tex]\( y = 2 \sin \left(\frac{1}{2} x + \pi\right) \)[/tex]
[tex]\[ \phi = -\frac{\pi}{\frac{1}{2}} = -2\pi \][/tex]
This corresponds to a phase shift of [tex]\(-2\pi\)[/tex] (or [tex]\(2\pi\)[/tex] to the left), not [tex]\(\frac{\pi}{2}\)[/tex] to the right.
B. [tex]\( y = 2 \sin (2 x + \pi) \)[/tex]
[tex]\[ \phi = -\frac{\pi}{2} = -\frac{\pi}{2} \][/tex]
This corresponds to a phase shift of [tex]\(-\frac{\pi}{2}\)[/tex] (or [tex]\(\frac{\pi}{2}\)[/tex] to the left), not to the right.
C. [tex]\( y = 2 \sin \left(x + \frac{\pi}{2}\right) \)[/tex]
[tex]\[ \phi = -\frac{\frac{\pi}{2}}{1} = -\frac{\pi}{2} \][/tex]
This also corresponds to a phase shift of [tex]\(-\frac{\pi}{2}\)[/tex], not [tex]\(\frac{\pi}{2}\)[/tex] to the right.
D. [tex]\( y = 2 \sin (x - \pi) \)[/tex]
[tex]\[ \phi = -\frac{-\pi}{1} = \pi \][/tex]
This corresponds to a phase shift of [tex]\(\pi\)[/tex] to the right, not [tex]\(\frac{\pi}{2}\)[/tex] to the right.
E. [tex]\( y = 2 \sin (2 x - \pi) \)[/tex]
[tex]\[ \phi = -\frac{-\pi}{2} = \frac{\pi}{2} \][/tex]
This corresponds to a phase shift of [tex]\(\frac{\pi}{2}\)[/tex] to the right, which is exactly what we are looking for.
Thus, the correct function with a phase shift of [tex]\(\frac{\pi}{2}\)[/tex] to the right is:
[tex]\[ E. \, y = 2 \sin (2 x - \pi) \][/tex]
So, the function that has a phase shift of [tex]\(\frac{\pi}{2}\)[/tex] to the right corresponds to option E.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.