Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's go through the problem step-by-step.
1. Understanding the Formula:
The formula for the circumference of a circle is given by:
[tex]\[ C = 2 \pi r \][/tex]
where:
- [tex]\( C \)[/tex] is the circumference,
- [tex]\( r \)[/tex] is the radius of the circle,
- [tex]\( \pi \)[/tex] is a mathematical constant approximately equal to 3.14159.
2. Given Information:
The circumference [tex]\( C \)[/tex] of the circle is given as [tex]\( 16 \pi \)[/tex].
3. Solving for the Radius:
We need to solve for the radius [tex]\( r \)[/tex]. Using the formula for the circumference, we can rearrange it to solve for [tex]\( r \)[/tex]:
[tex]\[ C = 2 \pi r \][/tex]
Substituting [tex]\( C = 16 \pi \)[/tex] into the formula gives:
[tex]\[ 16 \pi = 2 \pi r \][/tex]
To isolate [tex]\( r \)[/tex], divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ r = \frac{16 \pi}{2 \pi} \][/tex]
4. Simplifying the Expression:
Simplify the right-hand side of the equation:
[tex]\[ r = \frac{16 \pi}{2 \pi} = \frac{16}{2} = 8 \][/tex]
5. Conclusion:
The radius [tex]\( r \)[/tex] of the circle with a circumference of [tex]\( 16 \pi \)[/tex] is:
[tex]\[ r = 8 \][/tex]
Therefore, the radius of the circle is 8.
1. Understanding the Formula:
The formula for the circumference of a circle is given by:
[tex]\[ C = 2 \pi r \][/tex]
where:
- [tex]\( C \)[/tex] is the circumference,
- [tex]\( r \)[/tex] is the radius of the circle,
- [tex]\( \pi \)[/tex] is a mathematical constant approximately equal to 3.14159.
2. Given Information:
The circumference [tex]\( C \)[/tex] of the circle is given as [tex]\( 16 \pi \)[/tex].
3. Solving for the Radius:
We need to solve for the radius [tex]\( r \)[/tex]. Using the formula for the circumference, we can rearrange it to solve for [tex]\( r \)[/tex]:
[tex]\[ C = 2 \pi r \][/tex]
Substituting [tex]\( C = 16 \pi \)[/tex] into the formula gives:
[tex]\[ 16 \pi = 2 \pi r \][/tex]
To isolate [tex]\( r \)[/tex], divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ r = \frac{16 \pi}{2 \pi} \][/tex]
4. Simplifying the Expression:
Simplify the right-hand side of the equation:
[tex]\[ r = \frac{16 \pi}{2 \pi} = \frac{16}{2} = 8 \][/tex]
5. Conclusion:
The radius [tex]\( r \)[/tex] of the circle with a circumference of [tex]\( 16 \pi \)[/tex] is:
[tex]\[ r = 8 \][/tex]
Therefore, the radius of the circle is 8.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.