Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Reflecting a point over the line [tex]\( y = x \)[/tex] involves swapping the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] coordinates of the point. Let's go through this step-by-step:
1. Understand the reflection over [tex]\( y = x \)[/tex]:
- When reflecting a point [tex]\((x, y)\)[/tex] over the line [tex]\( y = x \)[/tex], the new point becomes [tex]\((y, x)\)[/tex]. This means the [tex]\( x \)[/tex]-coordinate becomes the [tex]\( y \)[/tex]-coordinate and the [tex]\( y \)[/tex]-coordinate becomes the [tex]\( x \)[/tex]-coordinate.
2. Given point [tex]\( D \)[/tex]:
- The coordinates of point [tex]\( D \)[/tex] are [tex]\((a, b)\)[/tex].
3. Swap the coordinates:
- To reflect [tex]\( D \)[/tex] over the line [tex]\( y = x \)[/tex], we swap the [tex]\( x \)[/tex] (which is [tex]\( a \)[/tex]) and [tex]\( y \)[/tex] (which is [tex]\( b \)[/tex]) coordinates. Thus, the coordinates of the reflected point [tex]\( D' \)[/tex] are [tex]\((b, a)\)[/tex].
Therefore, the coordinates of the image [tex]\( D' \)[/tex] after reflecting [tex]\( D \)[/tex] over the line [tex]\( y = x \)[/tex] are [tex]\((b, a)\)[/tex].
So, the correct answer is:
[tex]\( \boxed{(b, a)} \)[/tex]
1. Understand the reflection over [tex]\( y = x \)[/tex]:
- When reflecting a point [tex]\((x, y)\)[/tex] over the line [tex]\( y = x \)[/tex], the new point becomes [tex]\((y, x)\)[/tex]. This means the [tex]\( x \)[/tex]-coordinate becomes the [tex]\( y \)[/tex]-coordinate and the [tex]\( y \)[/tex]-coordinate becomes the [tex]\( x \)[/tex]-coordinate.
2. Given point [tex]\( D \)[/tex]:
- The coordinates of point [tex]\( D \)[/tex] are [tex]\((a, b)\)[/tex].
3. Swap the coordinates:
- To reflect [tex]\( D \)[/tex] over the line [tex]\( y = x \)[/tex], we swap the [tex]\( x \)[/tex] (which is [tex]\( a \)[/tex]) and [tex]\( y \)[/tex] (which is [tex]\( b \)[/tex]) coordinates. Thus, the coordinates of the reflected point [tex]\( D' \)[/tex] are [tex]\((b, a)\)[/tex].
Therefore, the coordinates of the image [tex]\( D' \)[/tex] after reflecting [tex]\( D \)[/tex] over the line [tex]\( y = x \)[/tex] are [tex]\((b, a)\)[/tex].
So, the correct answer is:
[tex]\( \boxed{(b, a)} \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.