Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the average atomic mass of an element with multiple isotopes, you can use the formula for weighted averages. The formula involves multiplying the atomic mass of each isotope by its relative abundance (as a decimal), then summing these values. Let's solve it step-by-step.
1. Convert the percentage abundances into decimal form:
- For X-63: [tex]\( 69.15\% = \frac{69.15}{100} = 0.6915 \)[/tex]
- For X-65: [tex]\( 30.85\% = \frac{30.85}{100} = 0.3085 \)[/tex]
2. Multiply the atomic mass of each isotope by its relative abundance:
- For X-63: [tex]\( 62.9296 \, \text{amu} \times 0.6915 \)[/tex]
- For X-65: [tex]\( 64.9278 \, \text{amu} \times 0.3085 \)[/tex]
3. Perform the multiplications:
- [tex]\( 62.9296 \times 0.6915 = 43.5112732 \)[/tex]
- [tex]\( 64.9278 \times 0.3085 = 20.0347715 \)[/tex]
4. Add the results together to find the average atomic mass:
- [tex]\( 43.5112732 + 20.0347715 = 63.5460447 \, \text{amu} \)[/tex]
5. Round the result to the nearest hundredth:
- [tex]\( 63.5460447 \rightarrow 63.55 \, \text{amu} \)[/tex]
Therefore, the average atomic mass of element [tex]\( X \)[/tex] is [tex]\( 63.55 \, \text{amu} \)[/tex].
1. Convert the percentage abundances into decimal form:
- For X-63: [tex]\( 69.15\% = \frac{69.15}{100} = 0.6915 \)[/tex]
- For X-65: [tex]\( 30.85\% = \frac{30.85}{100} = 0.3085 \)[/tex]
2. Multiply the atomic mass of each isotope by its relative abundance:
- For X-63: [tex]\( 62.9296 \, \text{amu} \times 0.6915 \)[/tex]
- For X-65: [tex]\( 64.9278 \, \text{amu} \times 0.3085 \)[/tex]
3. Perform the multiplications:
- [tex]\( 62.9296 \times 0.6915 = 43.5112732 \)[/tex]
- [tex]\( 64.9278 \times 0.3085 = 20.0347715 \)[/tex]
4. Add the results together to find the average atomic mass:
- [tex]\( 43.5112732 + 20.0347715 = 63.5460447 \, \text{amu} \)[/tex]
5. Round the result to the nearest hundredth:
- [tex]\( 63.5460447 \rightarrow 63.55 \, \text{amu} \)[/tex]
Therefore, the average atomic mass of element [tex]\( X \)[/tex] is [tex]\( 63.55 \, \text{amu} \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.