Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's solve the equation [tex]\(3 \ln(x) = 12\)[/tex] step-by-step.
Step 1: Start with the given equation:
[tex]\[ 3 \ln(x) = 12 \][/tex]
Step 2: Divide both sides of the equation by 3 to isolate [tex]\(\ln(x)\)[/tex].
[tex]\[ \frac{3 \ln(x)}{3} = \frac{12}{3} \][/tex]
[tex]\[ \ln(x) = 4 \][/tex]
Step 3: Rewrite the equation in its exponential form to solve for [tex]\(x\)[/tex]. The natural logarithm [tex]\(\ln(x)\)[/tex] is the power to which [tex]\(e\)[/tex] (the base of natural logarithms) must be raised to get [tex]\(x\)[/tex]. Therefore, [tex]\(\ln(x) = 4\)[/tex] can be written as:
[tex]\[ x = e^4 \][/tex]
Conclusion: The value of [tex]\(x\)[/tex] is [tex]\(e^4\)[/tex]. Given the precise numerical value from computations, [tex]\(e^4 \approx 54.598150033144236\)[/tex].
Thus, the complete solution is:
[tex]\[ \ln(x) = 4 \][/tex]
[tex]\[ x \approx 54.598150033144236 \][/tex]
So, the solution to the equation [tex]\(3 \ln(x) = 12\)[/tex] is:
[tex]\[ x \approx 54.598150033144236 \][/tex]
Step 1: Start with the given equation:
[tex]\[ 3 \ln(x) = 12 \][/tex]
Step 2: Divide both sides of the equation by 3 to isolate [tex]\(\ln(x)\)[/tex].
[tex]\[ \frac{3 \ln(x)}{3} = \frac{12}{3} \][/tex]
[tex]\[ \ln(x) = 4 \][/tex]
Step 3: Rewrite the equation in its exponential form to solve for [tex]\(x\)[/tex]. The natural logarithm [tex]\(\ln(x)\)[/tex] is the power to which [tex]\(e\)[/tex] (the base of natural logarithms) must be raised to get [tex]\(x\)[/tex]. Therefore, [tex]\(\ln(x) = 4\)[/tex] can be written as:
[tex]\[ x = e^4 \][/tex]
Conclusion: The value of [tex]\(x\)[/tex] is [tex]\(e^4\)[/tex]. Given the precise numerical value from computations, [tex]\(e^4 \approx 54.598150033144236\)[/tex].
Thus, the complete solution is:
[tex]\[ \ln(x) = 4 \][/tex]
[tex]\[ x \approx 54.598150033144236 \][/tex]
So, the solution to the equation [tex]\(3 \ln(x) = 12\)[/tex] is:
[tex]\[ x \approx 54.598150033144236 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.