Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the mass of the second train, we can use the principle of conservation of momentum. The principle states that the total momentum before a collision is equal to the total momentum after the collision, provided no external forces act on the system.
Let's break this down step by step:
1. Identify the known quantities:
- Mass of the first train ([tex]\( m_1 \)[/tex]): [tex]\( 5,000 \)[/tex] kg
- Initial velocity of the first train ([tex]\( v_1 \)[/tex]): [tex]\( 100 \)[/tex] m/s
- Combined velocity after collision ([tex]\( v_{\text{final}} \)[/tex]): [tex]\( 50 \)[/tex] m/s
2. Define the unknown quantity:
- Mass of the second train ([tex]\( m_2 \)[/tex])
3. Write the conservation of momentum equation:
The equation for the conservation of momentum before and after the collision is:
[tex]\[ m_1 \cdot v_1 = (m_1 + m_2) \cdot v_{\text{final}} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ 5000 \ \text{kg} \cdot 100 \ \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
5. Solve for the mass of the second train ([tex]\( m_2 \)[/tex]):
[tex]\[ 500,000 \ \text{kg} \cdot \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
6. Divide both sides by [tex]\( 50 \ \text{m/s} \)[/tex] to isolate [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} = 5000 \ \text{kg} + m_2 \][/tex]
7. Subtract the mass of the first train from both sides to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} - 5000 \ \text{kg} = m_2 \][/tex]
[tex]\[ m_2 = 5000 \ \text{kg} \][/tex]
Therefore, the mass of the second train is [tex]\( 5,000 \)[/tex] kg.
The correct answer is:
D. [tex]$5,000 kg$[/tex]
Let's break this down step by step:
1. Identify the known quantities:
- Mass of the first train ([tex]\( m_1 \)[/tex]): [tex]\( 5,000 \)[/tex] kg
- Initial velocity of the first train ([tex]\( v_1 \)[/tex]): [tex]\( 100 \)[/tex] m/s
- Combined velocity after collision ([tex]\( v_{\text{final}} \)[/tex]): [tex]\( 50 \)[/tex] m/s
2. Define the unknown quantity:
- Mass of the second train ([tex]\( m_2 \)[/tex])
3. Write the conservation of momentum equation:
The equation for the conservation of momentum before and after the collision is:
[tex]\[ m_1 \cdot v_1 = (m_1 + m_2) \cdot v_{\text{final}} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ 5000 \ \text{kg} \cdot 100 \ \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
5. Solve for the mass of the second train ([tex]\( m_2 \)[/tex]):
[tex]\[ 500,000 \ \text{kg} \cdot \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
6. Divide both sides by [tex]\( 50 \ \text{m/s} \)[/tex] to isolate [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} = 5000 \ \text{kg} + m_2 \][/tex]
7. Subtract the mass of the first train from both sides to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} - 5000 \ \text{kg} = m_2 \][/tex]
[tex]\[ m_2 = 5000 \ \text{kg} \][/tex]
Therefore, the mass of the second train is [tex]\( 5,000 \)[/tex] kg.
The correct answer is:
D. [tex]$5,000 kg$[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.