Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve the given exponential equation step by step:
The given equation is:
[tex]\[ e^{3x - 4} \cdot e^{-x} = 2e \][/tex]
First, we simplify the left-hand side. We know that when multiplying exponential expressions with the same base, we add the exponents:
[tex]\[ e^{3x - 4} \cdot e^{-x} = e^{(3x - 4) + (-x)} = e^{3x - 4 - x} = e^{2x - 4} \][/tex]
Now, our equation simplifies to:
[tex]\[ e^{2x - 4} = 2e \][/tex]
Next, we want to isolate the exponential expression. Since the right-hand side has an [tex]\(e\)[/tex], we can divide both sides by [tex]\(e\)[/tex]:
[tex]\[ e^{2x - 4} = 2e \][/tex]
[tex]\[ e^{2x - 4} / e = 2e / e \][/tex]
[tex]\[ e^{2x - 4 - 1} = 2 \][/tex]
[tex]\[ e^{2x - 5} = 2 \][/tex]
To solve for [tex]\(x\)[/tex], we take the natural logarithm (ln) of both sides of the equation. Applying the natural logarithm to both sides, we get:
[tex]\[ \ln(e^{2x - 5}) = \ln(2) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^y) = y\)[/tex], we simplify the left-hand side:
[tex]\[ 2x - 5 = \ln(2) \][/tex]
Now, we solve for [tex]\(x\)[/tex] by isolating it on one side of the equation. First, add 5 to both sides:
[tex]\[ 2x = \ln(2) + 5 \][/tex]
Then, divide both sides by 2:
[tex]\[ x = \frac{\ln(2) + 5}{2} \][/tex]
We know that [tex]\(\ln(2) \approx 0.693\)[/tex]:
[tex]\[ x = \frac{0.693 + 5}{2} = \frac{5.693}{2} \approx 2.847 \][/tex]
Therefore, the solution to the equation, correct to the nearest thousandth, is:
[tex]\[ x \approx 2.847 \][/tex]
The given equation is:
[tex]\[ e^{3x - 4} \cdot e^{-x} = 2e \][/tex]
First, we simplify the left-hand side. We know that when multiplying exponential expressions with the same base, we add the exponents:
[tex]\[ e^{3x - 4} \cdot e^{-x} = e^{(3x - 4) + (-x)} = e^{3x - 4 - x} = e^{2x - 4} \][/tex]
Now, our equation simplifies to:
[tex]\[ e^{2x - 4} = 2e \][/tex]
Next, we want to isolate the exponential expression. Since the right-hand side has an [tex]\(e\)[/tex], we can divide both sides by [tex]\(e\)[/tex]:
[tex]\[ e^{2x - 4} = 2e \][/tex]
[tex]\[ e^{2x - 4} / e = 2e / e \][/tex]
[tex]\[ e^{2x - 4 - 1} = 2 \][/tex]
[tex]\[ e^{2x - 5} = 2 \][/tex]
To solve for [tex]\(x\)[/tex], we take the natural logarithm (ln) of both sides of the equation. Applying the natural logarithm to both sides, we get:
[tex]\[ \ln(e^{2x - 5}) = \ln(2) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^y) = y\)[/tex], we simplify the left-hand side:
[tex]\[ 2x - 5 = \ln(2) \][/tex]
Now, we solve for [tex]\(x\)[/tex] by isolating it on one side of the equation. First, add 5 to both sides:
[tex]\[ 2x = \ln(2) + 5 \][/tex]
Then, divide both sides by 2:
[tex]\[ x = \frac{\ln(2) + 5}{2} \][/tex]
We know that [tex]\(\ln(2) \approx 0.693\)[/tex]:
[tex]\[ x = \frac{0.693 + 5}{2} = \frac{5.693}{2} \approx 2.847 \][/tex]
Therefore, the solution to the equation, correct to the nearest thousandth, is:
[tex]\[ x \approx 2.847 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.