Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the range of possible values for the third side of an acute triangle with the given sides measuring 10 cm and 16 cm, we need to use the triangle inequality theorem. The triangle inequality theorem states that for any triangle with sides [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
1. [tex]\(a + b > c\)[/tex]
2. [tex]\(a + c > b\)[/tex]
3. [tex]\(b + c > a\)[/tex]
Let's denote the unknown side by [tex]\(x\)[/tex]. We will now apply the triangle inequality theorem:
1. [tex]\(10 + 16 > x\)[/tex]
[tex]\[ 26 > x \][/tex]
[tex]\[ x < 26 \][/tex]
2. [tex]\(10 + x > 16\)[/tex]
[tex]\[ x > 16 - 10 \][/tex]
[tex]\[ x > 6 \][/tex]
3. [tex]\(16 + x > 10\)[/tex]
[tex]\[ x > 10 - 16 \][/tex]
This inequality is also covered by [tex]\(x > 6\)[/tex].
Taking all these inequalities together, the range of possible values for [tex]\(x\)[/tex] is:
[tex]\[ 6 < x < 26 \][/tex]
Therefore, the best description of the range of possible values for the third side [tex]\(x\)[/tex] of the triangle is:
[tex]\[ \boxed{6 < x < 26} \][/tex]
1. [tex]\(a + b > c\)[/tex]
2. [tex]\(a + c > b\)[/tex]
3. [tex]\(b + c > a\)[/tex]
Let's denote the unknown side by [tex]\(x\)[/tex]. We will now apply the triangle inequality theorem:
1. [tex]\(10 + 16 > x\)[/tex]
[tex]\[ 26 > x \][/tex]
[tex]\[ x < 26 \][/tex]
2. [tex]\(10 + x > 16\)[/tex]
[tex]\[ x > 16 - 10 \][/tex]
[tex]\[ x > 6 \][/tex]
3. [tex]\(16 + x > 10\)[/tex]
[tex]\[ x > 10 - 16 \][/tex]
This inequality is also covered by [tex]\(x > 6\)[/tex].
Taking all these inequalities together, the range of possible values for [tex]\(x\)[/tex] is:
[tex]\[ 6 < x < 26 \][/tex]
Therefore, the best description of the range of possible values for the third side [tex]\(x\)[/tex] of the triangle is:
[tex]\[ \boxed{6 < x < 26} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.