Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the complex conjugate of [tex]\(8 - \sqrt{3}\)[/tex], let's follow the general rule for finding the complex conjugate.
Given a complex number in the form [tex]\(a + bi\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are real numbers and [tex]\(i\)[/tex] is the imaginary unit, the complex conjugate is [tex]\(a - bi\)[/tex].
1. Identify the components:
- Here, [tex]\(a = 8\)[/tex] and [tex]\(b = -\sqrt{3}\)[/tex] (since [tex]\(8 - \sqrt{3}\)[/tex] can be seen as [tex]\(8 + (-\sqrt{3})\)[/tex]).
2. Apply the complex conjugate rule:
- The complex conjugate is [tex]\(a - bi\)[/tex]. For the given number, this means replacing [tex]\(-\sqrt{3}\)[/tex] with [tex]\(+\sqrt{3}\)[/tex].
Thus, the complex conjugate of [tex]\(8 - \sqrt{3}\)[/tex] is [tex]\[8 + \sqrt{3}\][/tex].
Checking the given options:
- [tex]\(8 \sqrt{3}\)[/tex]: Incorrect, it doesn’t follow the conjugate rule.
- [tex]\(3 + \sqrt{8}\)[/tex]: Incorrect, completely unrelated to the given number.
- [tex]\(8 + \sqrt{3}\)[/tex]: Correct, matches our derived conjugate.
- [tex]\(8 - \sqrt{3}\)[/tex]: Incorrect, this is the original number, not its conjugate.
So, the correct answer is:
[tex]\[8 + \sqrt{3}\][/tex]
The numerical result for [tex]\(8 + \sqrt{3}\)[/tex] approximately equals 9.732050807568877, confirming the correct option.
Given a complex number in the form [tex]\(a + bi\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are real numbers and [tex]\(i\)[/tex] is the imaginary unit, the complex conjugate is [tex]\(a - bi\)[/tex].
1. Identify the components:
- Here, [tex]\(a = 8\)[/tex] and [tex]\(b = -\sqrt{3}\)[/tex] (since [tex]\(8 - \sqrt{3}\)[/tex] can be seen as [tex]\(8 + (-\sqrt{3})\)[/tex]).
2. Apply the complex conjugate rule:
- The complex conjugate is [tex]\(a - bi\)[/tex]. For the given number, this means replacing [tex]\(-\sqrt{3}\)[/tex] with [tex]\(+\sqrt{3}\)[/tex].
Thus, the complex conjugate of [tex]\(8 - \sqrt{3}\)[/tex] is [tex]\[8 + \sqrt{3}\][/tex].
Checking the given options:
- [tex]\(8 \sqrt{3}\)[/tex]: Incorrect, it doesn’t follow the conjugate rule.
- [tex]\(3 + \sqrt{8}\)[/tex]: Incorrect, completely unrelated to the given number.
- [tex]\(8 + \sqrt{3}\)[/tex]: Correct, matches our derived conjugate.
- [tex]\(8 - \sqrt{3}\)[/tex]: Incorrect, this is the original number, not its conjugate.
So, the correct answer is:
[tex]\[8 + \sqrt{3}\][/tex]
The numerical result for [tex]\(8 + \sqrt{3}\)[/tex] approximately equals 9.732050807568877, confirming the correct option.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.