Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Apply the Runge-Kutta method of fourth order to find an approximate solution at [tex]x=0.1[/tex], given [tex]\frac{d y}{d x}=3 x + \frac{y}{2}, \ y(0)=1[/tex].

Sagot :

To apply the Runge-Kutta method of fourth order to find an approximate solution at [tex]\( x = 0.1 \)[/tex] for the differential equation [tex]\( \frac{dy}{dx} = 3x + \frac{y}{2} \)[/tex] with the initial condition [tex]\( y(0) = 1 \)[/tex], we will follow these steps:

1. Define the differential equation and initial conditions:

[tex]\[ \frac{dy}{dx} = 3x + \frac{y}{2} \][/tex]
Initial condition: [tex]\( x_0 = 0 \)[/tex], [tex]\( y_0 = 1 \)[/tex]
Step size: [tex]\( h = 0.1 \)[/tex]
Endpoint: [tex]\( x = 0.1 \)[/tex]

2. Compute the slopes ([tex]\(k\)[/tex] values) for the Runge-Kutta method:

- Calculate [tex]\( k_1 \)[/tex]:
[tex]\[ k_1 = h \cdot f(x_0, y_0) = 0.1 \cdot (3 \cdot 0 + \frac{1}{2}) = 0.1 \cdot 0.5 = 0.05 \][/tex]

- Calculate [tex]\( k_2 \)[/tex]:
[tex]\[ k_2 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.05}{2}}{2}\right) \][/tex]
[tex]\[ k_2 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.025}{2}\right) = 0.1 \cdot (0.15 + 0.5125) = 0.1 \cdot 0.6625 = 0.06625 \][/tex]

- Calculate [tex]\( k_3 \)[/tex]:
[tex]\[ k_3 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.06625}{2}}{2}\right) \][/tex]
[tex]\[ k_3 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.033125}{2}\right) = 0.1 \cdot (0.15 + 0.5165625) = 0.1 \cdot 0.6665625 = 0.06665625 \][/tex]

- Calculate [tex]\( k_4 \)[/tex]:
[tex]\[ k_4 = h \cdot f(x_0 + h, y_0 + k_3) = 0.1 \cdot \left(3 \cdot 0.1 + \frac{1 + 0.06665625}{2}\right) \][/tex]
[tex]\[ k_4 = 0.1 \cdot \left(0.3 + \frac{1.06665625}{2}\right) = 0.1 \cdot (0.3 + 0.533328125) = 0.1 \cdot 0.833328125 = 0.0833328125 \][/tex]

3. Calculate the next value of [tex]\( y \)[/tex] ([tex]\( y_{1} \)[/tex]) using the [tex]\( k \)[/tex] values:

[tex]\[ y_{1} = y_{0} + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 2 \cdot 0.06625 + 2 \cdot 0.06665625 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 0.1325 + 0.1333125 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.3991453125}{6} \][/tex]
[tex]\[ y_{1} = 1 + 0.06652421875 \][/tex]

Thus, the approximate value of [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is:

[tex]\[ y(0.1) \approx 1.06652421875 \][/tex]

Therefore, using the Runge-Kutta method of fourth order, we find that the approximate solution for [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is [tex]\( y(0.1) \approx 1.0665 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.