Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
In general, as the number of subintervals increases, the Riemann sum approximations to the area of a region under a curve become a more accurate estimate of the actual area of a region under a curve. This is because the smaller the subintervals (i.e., the more subintervals there are), the closer the sum of the areas of the rectangles used in the Riemann sum approximations will be to the true area under the curve. Reducing the width of each subinterval allows the rectangles to better match the shape of the curve, thereby reducing the overall error in the approximation. Therefore, as the number of subintervals increases, the Riemann sum becomes more precise in estimating the area.
The correct answer is:
OA. In general, as the number of subintervals increases, the Riemann sum approximations to the area of a region under a curve become a more accurate estimate of the actual area of a region under a curve.
The correct answer is:
OA. In general, as the number of subintervals increases, the Riemann sum approximations to the area of a region under a curve become a more accurate estimate of the actual area of a region under a curve.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.