Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find out how many subsets of the set [tex]\( B = \{1, 2, 3, 4\} \)[/tex] have exactly two elements, we need to use combinatorial principles.
The process involves finding combinations of 2 elements from the set [tex]\( B \)[/tex]. In combinatorial terms, this is often denoted as [tex]\( \binom{n}{k} \)[/tex], where [tex]\( n \)[/tex] is the total number of elements in the set, and [tex]\( k \)[/tex] is the number of elements we want to select. Here:
- [tex]\( n = 4 \)[/tex] (since the set [tex]\( B \)[/tex] has 4 elements)
- [tex]\( k = 2 \)[/tex] (since we want to form subsets containing exactly 2 elements)
The formula for combinations is:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Plugging in the values we have:
[tex]\[ \binom{4}{2} = \frac{4!}{2! \cdot (4-2)!} = \frac{4!}{2! \cdot 2!} \][/tex]
First, we compute the factorials:
- [tex]\( 4! = 4 \times 3 \times 2 \times 1 = 24 \)[/tex]
- [tex]\( 2! = 2 \times 1 = 2 \)[/tex]
So,
[tex]\[ \binom{4}{2} = \frac{24}{2 \times 2} = \frac{24}{4} = 6 \][/tex]
Therefore, there are 6 subsets of the set [tex]\( B \)[/tex] that have exactly two elements. The subsets are:
[tex]\[ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \][/tex]
So the correct answer is:
[tex]\[ 6 \][/tex]
The process involves finding combinations of 2 elements from the set [tex]\( B \)[/tex]. In combinatorial terms, this is often denoted as [tex]\( \binom{n}{k} \)[/tex], where [tex]\( n \)[/tex] is the total number of elements in the set, and [tex]\( k \)[/tex] is the number of elements we want to select. Here:
- [tex]\( n = 4 \)[/tex] (since the set [tex]\( B \)[/tex] has 4 elements)
- [tex]\( k = 2 \)[/tex] (since we want to form subsets containing exactly 2 elements)
The formula for combinations is:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Plugging in the values we have:
[tex]\[ \binom{4}{2} = \frac{4!}{2! \cdot (4-2)!} = \frac{4!}{2! \cdot 2!} \][/tex]
First, we compute the factorials:
- [tex]\( 4! = 4 \times 3 \times 2 \times 1 = 24 \)[/tex]
- [tex]\( 2! = 2 \times 1 = 2 \)[/tex]
So,
[tex]\[ \binom{4}{2} = \frac{24}{2 \times 2} = \frac{24}{4} = 6 \][/tex]
Therefore, there are 6 subsets of the set [tex]\( B \)[/tex] that have exactly two elements. The subsets are:
[tex]\[ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \][/tex]
So the correct answer is:
[tex]\[ 6 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.