Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the vertical asymptotes of the function [tex]\( f(x) = \frac{2x - 4}{x^2 - 4} \)[/tex], we follow these steps:
1. Identify the Denominator:
The denominator of the function is [tex]\( x^2 - 4 \)[/tex]. Vertical asymptotes occur where this denominator equals zero because division by zero is undefined.
2. Set the Denominator to Zero:
To find where the denominator equals zero, we solve the equation:
[tex]\[ x^2 - 4 = 0 \][/tex]
3. Factor the Denominator:
The expression [tex]\( x^2 - 4 \)[/tex] is a difference of squares and can be factored as follows:
[tex]\[ x^2 - 4 = (x - 2)(x + 2) \][/tex]
4. Solve for x:
Now, we solve each factor for zero:
[tex]\[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \][/tex]
[tex]\[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \][/tex]
5. Identify Vertical Asymptotes:
The values [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex] make the denominator zero, which means the function has vertical asymptotes at these points.
Thus, the function [tex]\( f(x) = \frac{2x - 4}{x^2 - 4} \)[/tex] has two vertical asymptotes.
Therefore, the correct answer is:
C. The graph has two vertical asymptotes.
1. Identify the Denominator:
The denominator of the function is [tex]\( x^2 - 4 \)[/tex]. Vertical asymptotes occur where this denominator equals zero because division by zero is undefined.
2. Set the Denominator to Zero:
To find where the denominator equals zero, we solve the equation:
[tex]\[ x^2 - 4 = 0 \][/tex]
3. Factor the Denominator:
The expression [tex]\( x^2 - 4 \)[/tex] is a difference of squares and can be factored as follows:
[tex]\[ x^2 - 4 = (x - 2)(x + 2) \][/tex]
4. Solve for x:
Now, we solve each factor for zero:
[tex]\[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \][/tex]
[tex]\[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \][/tex]
5. Identify Vertical Asymptotes:
The values [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex] make the denominator zero, which means the function has vertical asymptotes at these points.
Thus, the function [tex]\( f(x) = \frac{2x - 4}{x^2 - 4} \)[/tex] has two vertical asymptotes.
Therefore, the correct answer is:
C. The graph has two vertical asymptotes.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.