Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Pour résoudre le système d'équations suivant dans [tex]\(\mathbb{R}\)[/tex], nous allons procéder étape par étape :
[tex]\[ \left\{ \begin{array}{c} x + y - z = 1 \\ 2x + 3y + \beta z = 3 \\ x + \beta y + 3z = -3 \end{array} \right. \][/tex]
### Étape 1 : Représentation matricielle
On peut représenter le système sous forme d'une matrice augmentée [tex]\(A|B\)[/tex].
[tex]\[ A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix} \][/tex]
### Étape 2 : Déterminant de la matrice des coefficients
Pour déterminer si le système a une solution unique, nous devons nous assurer que le déterminant de la matrice des coefficients [tex]\(A\)[/tex] n'est pas nul. Calculons ce déterminant :
[tex]\[ \det(A) = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{vmatrix} \][/tex]
En développant par les cofacteurs de la première ligne :
[tex]\[ \det(A) = 1 \cdot \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} \][/tex]
Calculons chaque sous-déterminant :
[tex]\[ \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} = 3 \cdot 3 - \beta \cdot \beta = 9 - \beta^2 \][/tex]
[tex]\[ \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - \beta \cdot 1 = 6 - \beta \][/tex]
[tex]\[ \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} = 2 \cdot \beta - 3 \cdot 1 = 2\beta - 3 \][/tex]
Donc,
[tex]\[ \det(A) = 1 \cdot (9 - \beta^2) - 1 \cdot (6 - \beta) - 1 \cdot (2\beta - 3) \][/tex]
Regroupons les termes :
[tex]\[ \det(A) = 9 - \beta^2 - 6 + \beta - 2\beta + 3 \][/tex]
[tex]\[ \det(A) = -\beta^2 - \beta + 6 \][/tex]
Pour que le système ait une solution unique, il faut que [tex]\(\det(A) \neq 0\)[/tex]. Cherchons les valeurs de [tex]\(\beta\)[/tex] pour lesquelles ce déterminant est nul :
[tex]\(-\beta^2 - \beta + 6 = 0\)[/tex]
### Étape 3 : Résolution de l'équation du déterminant
Résolvons l'équation quadratique [tex]\(-\beta^2 - \beta + 6 = 0\)[/tex] :
Revenons sur cette équation en changeant le signe :
[tex]\(\beta^2 + \beta - 6 = 0\)[/tex]
Les racines de cette équation quadratique se déterminent comme suit :
[tex]\[ \Delta = 1^2 - 4 \cdot 1 \cdot (-6) = 1 + 24 = 25 \][/tex]
[tex]\[ \beta_{1,2} = \frac{-1 \pm \sqrt{25}}{2} = \frac{-1 \pm 5}{2} \][/tex]
[tex]\[ \beta_1 = \frac{4}{2} = 2, \quad \beta_2 = \frac{-6}{2} = -3 \][/tex]
Donc les valeurs de [tex]\(\beta\)[/tex] pour lesquelles le déterminant est nul sont [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Étape 4 : Conclusion
Le système admet une solution unique pour toutes les valeurs de [tex]\(\beta\)[/tex] sauf [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Solution pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex]
Pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex], la solution du système est donnée par :
[tex]\[ x = \frac{\beta + 3}{\beta - 2}, \quad y = \frac{-4}{\beta - 2}, \quad z = \frac{1}{\beta - 2} \][/tex]
[tex]\[ \left\{ \begin{array}{c} x + y - z = 1 \\ 2x + 3y + \beta z = 3 \\ x + \beta y + 3z = -3 \end{array} \right. \][/tex]
### Étape 1 : Représentation matricielle
On peut représenter le système sous forme d'une matrice augmentée [tex]\(A|B\)[/tex].
[tex]\[ A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix} \][/tex]
### Étape 2 : Déterminant de la matrice des coefficients
Pour déterminer si le système a une solution unique, nous devons nous assurer que le déterminant de la matrice des coefficients [tex]\(A\)[/tex] n'est pas nul. Calculons ce déterminant :
[tex]\[ \det(A) = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{vmatrix} \][/tex]
En développant par les cofacteurs de la première ligne :
[tex]\[ \det(A) = 1 \cdot \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} \][/tex]
Calculons chaque sous-déterminant :
[tex]\[ \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} = 3 \cdot 3 - \beta \cdot \beta = 9 - \beta^2 \][/tex]
[tex]\[ \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - \beta \cdot 1 = 6 - \beta \][/tex]
[tex]\[ \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} = 2 \cdot \beta - 3 \cdot 1 = 2\beta - 3 \][/tex]
Donc,
[tex]\[ \det(A) = 1 \cdot (9 - \beta^2) - 1 \cdot (6 - \beta) - 1 \cdot (2\beta - 3) \][/tex]
Regroupons les termes :
[tex]\[ \det(A) = 9 - \beta^2 - 6 + \beta - 2\beta + 3 \][/tex]
[tex]\[ \det(A) = -\beta^2 - \beta + 6 \][/tex]
Pour que le système ait une solution unique, il faut que [tex]\(\det(A) \neq 0\)[/tex]. Cherchons les valeurs de [tex]\(\beta\)[/tex] pour lesquelles ce déterminant est nul :
[tex]\(-\beta^2 - \beta + 6 = 0\)[/tex]
### Étape 3 : Résolution de l'équation du déterminant
Résolvons l'équation quadratique [tex]\(-\beta^2 - \beta + 6 = 0\)[/tex] :
Revenons sur cette équation en changeant le signe :
[tex]\(\beta^2 + \beta - 6 = 0\)[/tex]
Les racines de cette équation quadratique se déterminent comme suit :
[tex]\[ \Delta = 1^2 - 4 \cdot 1 \cdot (-6) = 1 + 24 = 25 \][/tex]
[tex]\[ \beta_{1,2} = \frac{-1 \pm \sqrt{25}}{2} = \frac{-1 \pm 5}{2} \][/tex]
[tex]\[ \beta_1 = \frac{4}{2} = 2, \quad \beta_2 = \frac{-6}{2} = -3 \][/tex]
Donc les valeurs de [tex]\(\beta\)[/tex] pour lesquelles le déterminant est nul sont [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Étape 4 : Conclusion
Le système admet une solution unique pour toutes les valeurs de [tex]\(\beta\)[/tex] sauf [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Solution pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex]
Pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex], la solution du système est donnée par :
[tex]\[ x = \frac{\beta + 3}{\beta - 2}, \quad y = \frac{-4}{\beta - 2}, \quad z = \frac{1}{\beta - 2} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.