Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Select the correct answer.

Which pair of statements describes the end behavior of the graph of the function [tex]f(x) = x^3 + 2x^2 - 5x - 6[/tex]?

A. As [tex]x[/tex] approaches negative infinity, [tex]f(x)[/tex] approaches infinity. As [tex]x[/tex] approaches infinity, [tex]f(x)[/tex] approaches infinity.
B. As [tex]x[/tex] approaches negative infinity, [tex]f(x)[/tex] approaches infinity. As [tex]x[/tex] approaches infinity, [tex]f(x)[/tex] approaches negative infinity.
C. As [tex]x[/tex] approaches negative infinity, [tex]f(x)[/tex] approaches negative infinity. As [tex]x[/tex] approaches infinity, [tex]f(x)[/tex] approaches negative infinity.
D. As [tex]x[/tex] approaches negative infinity, [tex]f(x)[/tex] approaches negative infinity. As [tex]x[/tex] approaches infinity, [tex]f(x)[/tex] approaches infinity.


Sagot :

To determine the end behavior of the function [tex]\( f(x) = x^3 + 2x^2 - 5x - 6 \)[/tex], we analyze its leading term, which is [tex]\( x^3 \)[/tex] in this case. The behavior of the function as [tex]\( x \)[/tex] approaches positive or negative infinity is dictated by this leading term.

For the cubic polynomial [tex]\( f(x) = x^3 + 2x^2 - 5x - 6 \)[/tex]:

1. As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]):
- The leading term [tex]\( x^3 \)[/tex] dominates the behavior.
- When [tex]\( x \)[/tex] is a large negative number, [tex]\( x^3 \)[/tex] becomes a large negative number.
- Therefore, as [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].

2. As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]):
- The leading term [tex]\( x^3 \)[/tex] again dominates the behavior.
- When [tex]\( x \)[/tex] is a large positive number, [tex]\( x^3 \)[/tex] becomes a large positive number.
- Therefore, as [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].

Based on this analysis, the correct end behaviors described are:
- As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity.
- As [tex]\( x \)[/tex] approaches infinity, [tex]\( f(x) \)[/tex] approaches infinity.

The correct answer is:

D. As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity. As [tex]\( x \)[/tex] approaches infinity, \( f(x) approaches infinity.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.