Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's carefully analyze each given equation to determine which one could have been solved by Melanie.
### A. [tex]\(\frac{4}{x-3} = \frac{\pi}{10}\)[/tex]
- If [tex]\(x = 3\)[/tex], then the denominator of the left fraction becomes zero, making the equation undefined.
- As a result, [tex]\(3\)[/tex] cannot be a solution.
### B. [tex]\(\frac{x-3}{4} = \frac{2x-6}{4x}\)[/tex]
- If [tex]\(x = 3\)[/tex]:
- The numerator of the left fraction becomes [tex]\(0\)[/tex] (since [tex]\(3-3=0\)[/tex]), and the numerator of the right fraction also becomes [tex]\(0\)[/tex] (since [tex]\(2 \cdot 3 - 6 = 0\)[/tex]).
- Let's cross-multiply:
[tex]\[ (x-3) \cdot (4x) = 4 \cdot (2x - 6) \][/tex]
[tex]\[ 4x(x - 3) = 8x - 24 \][/tex]
[tex]\[ 4x^2 - 12x = 8x - 24 \][/tex]
[tex]\[ 4x^2 - 20x + 24 = 0 \][/tex]
[tex]\[ (2x - 6)(2x - 4) = 0 \][/tex]
[tex]\[ x = 3 \text{ and } x = 2 \][/tex]
- Here, [tex]\(x = 3\)[/tex] is a valid solution, not an extraneous one.
### C. [tex]\(\frac{8}{x^2-9} = \frac{5}{2x-6}\)[/tex]
- If [tex]\(x = 3\)[/tex]:
- The denominator of the left fraction becomes [tex]\(0\)[/tex] (since [tex]\(3^2 - 9 = 0\)[/tex]), and the denominator of the right fraction also becomes [tex]\(0\)[/tex] (since [tex]\(2 \cdot 3 - 6 = 0\)[/tex]).
- Let's cross-multiply:
[tex]\[ 8 \cdot (2x - 6) = 5 \cdot (x^2 - 9) \][/tex]
[tex]\[ 16x - 48 = 5x^2 - 45 \][/tex]
[tex]\[ 5x^2 - 16x + 3 = 0 \][/tex]
- Solving for [tex]\(x\)[/tex]:
[tex]\[ x = 3 \text{ and } x = \frac{1}{5} \][/tex]
- Here, [tex]\(x = 3\)[/tex] becomes an extraneous solution because it makes both denominators zero, so it cannot be a valid solution for the original equation.
### D. [tex]\(\frac{8}{x+3} = \frac{12}{4x-3}\)[/tex]
- If [tex]\(x = 3\)[/tex], then the denominators of both fractions are non-zero:
- Left denominator: [tex]\(3 + 3 = 6\)[/tex]
- Right denominator: [tex]\(4 \cdot 3 - 3 = 9\)[/tex]
- Hence, [tex]\(x = 3\)[/tex] does not make either of the fractions undefined.
Given the conditions of the problem where [tex]\(3\)[/tex] is an extraneous solution, we can conclude that the correct equation Melanie could have solved is:
C. [tex]\(\frac{8}{x^2-9} = \frac{5}{2x-6}\)[/tex]
### A. [tex]\(\frac{4}{x-3} = \frac{\pi}{10}\)[/tex]
- If [tex]\(x = 3\)[/tex], then the denominator of the left fraction becomes zero, making the equation undefined.
- As a result, [tex]\(3\)[/tex] cannot be a solution.
### B. [tex]\(\frac{x-3}{4} = \frac{2x-6}{4x}\)[/tex]
- If [tex]\(x = 3\)[/tex]:
- The numerator of the left fraction becomes [tex]\(0\)[/tex] (since [tex]\(3-3=0\)[/tex]), and the numerator of the right fraction also becomes [tex]\(0\)[/tex] (since [tex]\(2 \cdot 3 - 6 = 0\)[/tex]).
- Let's cross-multiply:
[tex]\[ (x-3) \cdot (4x) = 4 \cdot (2x - 6) \][/tex]
[tex]\[ 4x(x - 3) = 8x - 24 \][/tex]
[tex]\[ 4x^2 - 12x = 8x - 24 \][/tex]
[tex]\[ 4x^2 - 20x + 24 = 0 \][/tex]
[tex]\[ (2x - 6)(2x - 4) = 0 \][/tex]
[tex]\[ x = 3 \text{ and } x = 2 \][/tex]
- Here, [tex]\(x = 3\)[/tex] is a valid solution, not an extraneous one.
### C. [tex]\(\frac{8}{x^2-9} = \frac{5}{2x-6}\)[/tex]
- If [tex]\(x = 3\)[/tex]:
- The denominator of the left fraction becomes [tex]\(0\)[/tex] (since [tex]\(3^2 - 9 = 0\)[/tex]), and the denominator of the right fraction also becomes [tex]\(0\)[/tex] (since [tex]\(2 \cdot 3 - 6 = 0\)[/tex]).
- Let's cross-multiply:
[tex]\[ 8 \cdot (2x - 6) = 5 \cdot (x^2 - 9) \][/tex]
[tex]\[ 16x - 48 = 5x^2 - 45 \][/tex]
[tex]\[ 5x^2 - 16x + 3 = 0 \][/tex]
- Solving for [tex]\(x\)[/tex]:
[tex]\[ x = 3 \text{ and } x = \frac{1}{5} \][/tex]
- Here, [tex]\(x = 3\)[/tex] becomes an extraneous solution because it makes both denominators zero, so it cannot be a valid solution for the original equation.
### D. [tex]\(\frac{8}{x+3} = \frac{12}{4x-3}\)[/tex]
- If [tex]\(x = 3\)[/tex], then the denominators of both fractions are non-zero:
- Left denominator: [tex]\(3 + 3 = 6\)[/tex]
- Right denominator: [tex]\(4 \cdot 3 - 3 = 9\)[/tex]
- Hence, [tex]\(x = 3\)[/tex] does not make either of the fractions undefined.
Given the conditions of the problem where [tex]\(3\)[/tex] is an extraneous solution, we can conclude that the correct equation Melanie could have solved is:
C. [tex]\(\frac{8}{x^2-9} = \frac{5}{2x-6}\)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.