Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the polynomial division [tex]\((4x^2 + 5x - 6) \div (x + 2)\)[/tex], we will use polynomial long division. Here is the step-by-step process:
1. Setup the Division:
Write the dividend [tex]\(4x^2 + 5x - 6\)[/tex] and the divisor [tex]\(x + 2\)[/tex] in the long division format.
```
__________
x + 2 | 4x^2 + 5x - 6
```
2. First Division:
Divide the first term of the dividend [tex]\(4x^2\)[/tex] by the first term of the divisor [tex]\(x\)[/tex]. This gives [tex]\(4x\)[/tex].
```
4x
__________
x + 2 | 4x^2 + 5x - 6
```
3. First Multiplication:
Multiply the entire divisor [tex]\(x + 2\)[/tex] by the result [tex]\(4x\)[/tex] and write it under the dividend.
```
4x
___________
x + 2 | 4x^2 + 5x - 6
-(4x^2 + 8x)
------------
-3x - 6
```
4. First Subtraction:
Subtract [tex]\(4x^2 + 8x\)[/tex] from [tex]\(4x^2 + 5x - 6\)[/tex]. This results in [tex]\(-3x - 6\)[/tex].
5. Second Division:
Divide the first term of the new polynomial [tex]\(-3x\)[/tex] by the first term of the divisor [tex]\(x\)[/tex]. This gives [tex]\(-3\)[/tex].
```
4x - 3
___________
x + 2 | 4x^2 + 5x - 6
-(4x^2 + 8x)
------------
-3x - 6
+(-3x - 6)
------------
0
```
6. Second Multiplication:
Multiply the entire divisor [tex]\(x + 2\)[/tex] by the result [tex]\(-3\)[/tex] and write it under [tex]\(-3x - 6\)[/tex].
```
4x - 3
___________
x + 2 | 4x^2 + 5x - 6
-(4x^2 + 8x)
------------
-3x - 6
-(-3x - 6)
------------
0
```
7. Second Subtraction:
Subtract [tex]\(-3x - 6\)[/tex] from [tex]\(-3x - 6\)[/tex]. This results in a remainder of [tex]\(0\)[/tex].
Thus, the quotient of the division is [tex]\(4x - 3\)[/tex] with a remainder of [tex]\(0\)[/tex].
So, the answer is:
A. [tex]\(4x - 3\)[/tex]
1. Setup the Division:
Write the dividend [tex]\(4x^2 + 5x - 6\)[/tex] and the divisor [tex]\(x + 2\)[/tex] in the long division format.
```
__________
x + 2 | 4x^2 + 5x - 6
```
2. First Division:
Divide the first term of the dividend [tex]\(4x^2\)[/tex] by the first term of the divisor [tex]\(x\)[/tex]. This gives [tex]\(4x\)[/tex].
```
4x
__________
x + 2 | 4x^2 + 5x - 6
```
3. First Multiplication:
Multiply the entire divisor [tex]\(x + 2\)[/tex] by the result [tex]\(4x\)[/tex] and write it under the dividend.
```
4x
___________
x + 2 | 4x^2 + 5x - 6
-(4x^2 + 8x)
------------
-3x - 6
```
4. First Subtraction:
Subtract [tex]\(4x^2 + 8x\)[/tex] from [tex]\(4x^2 + 5x - 6\)[/tex]. This results in [tex]\(-3x - 6\)[/tex].
5. Second Division:
Divide the first term of the new polynomial [tex]\(-3x\)[/tex] by the first term of the divisor [tex]\(x\)[/tex]. This gives [tex]\(-3\)[/tex].
```
4x - 3
___________
x + 2 | 4x^2 + 5x - 6
-(4x^2 + 8x)
------------
-3x - 6
+(-3x - 6)
------------
0
```
6. Second Multiplication:
Multiply the entire divisor [tex]\(x + 2\)[/tex] by the result [tex]\(-3\)[/tex] and write it under [tex]\(-3x - 6\)[/tex].
```
4x - 3
___________
x + 2 | 4x^2 + 5x - 6
-(4x^2 + 8x)
------------
-3x - 6
-(-3x - 6)
------------
0
```
7. Second Subtraction:
Subtract [tex]\(-3x - 6\)[/tex] from [tex]\(-3x - 6\)[/tex]. This results in a remainder of [tex]\(0\)[/tex].
Thus, the quotient of the division is [tex]\(4x - 3\)[/tex] with a remainder of [tex]\(0\)[/tex].
So, the answer is:
A. [tex]\(4x - 3\)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.