Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's break down the question to find the zeros of the function [tex]\( y = x^2 (x^2 - 6x + 9) \)[/tex].
1. Identify the function and simplify it:
The function given is [tex]\( y = x^2 (x^2 - 6x + 9) \)[/tex]. To simplify the expression inside the parentheses, we notice that:
[tex]\[ x^2 - 6x + 9 = (x - 3)^2 \][/tex]
Therefore, the function simplifies to:
[tex]\[ y = x^2 (x - 3)^2 \][/tex]
2. Identify the zeros of the function:
The zeros of the function occur where the function evaluates to zero. This can be achieved by setting each factor equal to zero:
[tex]\[ x^2 = 0 \quad \text{or} \quad (x - 3)^2 = 0 \][/tex]
Solving these equations:
[tex]\[ x^2 = 0 \implies x = 0 \][/tex]
[tex]\[ (x - 3)^2 = 0 \implies x = 3 \][/tex]
Therefore, the zeros of the function are [tex]\( x = 0 \)[/tex] and [tex]\( x = 3 \)[/tex].
3. Count the distinct real zeros:
The zeros we found are [tex]\( x = 0 \)[/tex] and [tex]\( x = 3 \)[/tex], both of which are real numbers.
Thus, the function has 2 distinct real zeros.
4. Determine the number of complex zeros:
Since all the zeros we found are real numbers, there are no complex zeros.
Thus, the graph of the function [tex]\( y = x^2 (x^2 - 6x + 9) \)[/tex] has zeros of [tex]\( 0 \)[/tex] and [tex]\( 3 \)[/tex], so the function has 2 distinct real zeros and 0 complex zeros.
### Fill-in the blanks:
- The graph of the function [tex]\( y = x^2 (x^2 - 6 x + 9) \)[/tex] has zeros of 0, 3 , so the function has 2 distinct real zeros and 0 complex zeros.
1. Identify the function and simplify it:
The function given is [tex]\( y = x^2 (x^2 - 6x + 9) \)[/tex]. To simplify the expression inside the parentheses, we notice that:
[tex]\[ x^2 - 6x + 9 = (x - 3)^2 \][/tex]
Therefore, the function simplifies to:
[tex]\[ y = x^2 (x - 3)^2 \][/tex]
2. Identify the zeros of the function:
The zeros of the function occur where the function evaluates to zero. This can be achieved by setting each factor equal to zero:
[tex]\[ x^2 = 0 \quad \text{or} \quad (x - 3)^2 = 0 \][/tex]
Solving these equations:
[tex]\[ x^2 = 0 \implies x = 0 \][/tex]
[tex]\[ (x - 3)^2 = 0 \implies x = 3 \][/tex]
Therefore, the zeros of the function are [tex]\( x = 0 \)[/tex] and [tex]\( x = 3 \)[/tex].
3. Count the distinct real zeros:
The zeros we found are [tex]\( x = 0 \)[/tex] and [tex]\( x = 3 \)[/tex], both of which are real numbers.
Thus, the function has 2 distinct real zeros.
4. Determine the number of complex zeros:
Since all the zeros we found are real numbers, there are no complex zeros.
Thus, the graph of the function [tex]\( y = x^2 (x^2 - 6x + 9) \)[/tex] has zeros of [tex]\( 0 \)[/tex] and [tex]\( 3 \)[/tex], so the function has 2 distinct real zeros and 0 complex zeros.
### Fill-in the blanks:
- The graph of the function [tex]\( y = x^2 (x^2 - 6 x + 9) \)[/tex] has zeros of 0, 3 , so the function has 2 distinct real zeros and 0 complex zeros.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.