Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the possible signs of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] in the factored form [tex]\((x + p)(x + q)\)[/tex] of the polynomial [tex]\( x^2 - 10x + 9 \)[/tex], we first need to identify two key pieces of information: the product of [tex]\( p \)[/tex] and [tex]\( q \)[/tex], and the sum of [tex]\( p \)[/tex] and [tex]\( q \)[/tex].
### Step-by-Step Solution
1. Identify the Product of [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
In the factored form [tex]\((x + p)(x + q)\)[/tex], when you expand the terms, you get:
[tex]\[ x^2 + (p + q)x + pq \][/tex]
This expanded form corresponds to the standard form [tex]\( ax^2 + bx + c \)[/tex].
Therefore, we compare:
[tex]\[ x^2 + (p + q)x + pq = x^2 - 10x + 9 \][/tex]
From the above equation, we see that the product [tex]\( pq \)[/tex] is equal to the constant term [tex]\( 9 \)[/tex] (the coefficient [tex]\( c \)[/tex]).
2. Identify the Sum of [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
The coefficient of the [tex]\( x \)[/tex] term in the expanded form is [tex]\( (p + q) \)[/tex]. Comparing again with the standard form [tex]\( x^2 - 10x + 9 \)[/tex], we observe:
[tex]\[ p + q = -10 \][/tex]
Hence, the sum [tex]\( p + q \)[/tex] is equal to the coefficient of [tex]\( x \)[/tex], which is [tex]\( -10 \)[/tex].
3. Determine the Signs of [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
- The product [tex]\( pq = 9 \)[/tex] is positive. For the product of two numbers to be positive, either both numbers must be positive, or both must be negative.
- The sum [tex]\( p + q = -10 \)[/tex] is negative. For the sum of two numbers to be negative, both numbers must be negative, since the sum of two positive numbers cannot be negative.
Therefore, for the conditions [tex]\( pq = 9 \)[/tex] (positive product) and [tex]\( p + q = -10 \)[/tex] (negative sum) to hold true simultaneously, both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] must be negative.
### Conclusion
Given the polynomial [tex]\( x^2 - 10x + 9 \)[/tex], the signs of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] in the factored form [tex]\((x + p)(x + q)\)[/tex] must both be negative. This is because their product is positive, which means [tex]\( p \)[/tex] and [tex]\( q \)[/tex] must have the same sign, and their sum is negative, which means [tex]\( p \)[/tex] and [tex]\( q \)[/tex] must both be negative.
### Step-by-Step Solution
1. Identify the Product of [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
In the factored form [tex]\((x + p)(x + q)\)[/tex], when you expand the terms, you get:
[tex]\[ x^2 + (p + q)x + pq \][/tex]
This expanded form corresponds to the standard form [tex]\( ax^2 + bx + c \)[/tex].
Therefore, we compare:
[tex]\[ x^2 + (p + q)x + pq = x^2 - 10x + 9 \][/tex]
From the above equation, we see that the product [tex]\( pq \)[/tex] is equal to the constant term [tex]\( 9 \)[/tex] (the coefficient [tex]\( c \)[/tex]).
2. Identify the Sum of [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
The coefficient of the [tex]\( x \)[/tex] term in the expanded form is [tex]\( (p + q) \)[/tex]. Comparing again with the standard form [tex]\( x^2 - 10x + 9 \)[/tex], we observe:
[tex]\[ p + q = -10 \][/tex]
Hence, the sum [tex]\( p + q \)[/tex] is equal to the coefficient of [tex]\( x \)[/tex], which is [tex]\( -10 \)[/tex].
3. Determine the Signs of [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
- The product [tex]\( pq = 9 \)[/tex] is positive. For the product of two numbers to be positive, either both numbers must be positive, or both must be negative.
- The sum [tex]\( p + q = -10 \)[/tex] is negative. For the sum of two numbers to be negative, both numbers must be negative, since the sum of two positive numbers cannot be negative.
Therefore, for the conditions [tex]\( pq = 9 \)[/tex] (positive product) and [tex]\( p + q = -10 \)[/tex] (negative sum) to hold true simultaneously, both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] must be negative.
### Conclusion
Given the polynomial [tex]\( x^2 - 10x + 9 \)[/tex], the signs of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] in the factored form [tex]\((x + p)(x + q)\)[/tex] must both be negative. This is because their product is positive, which means [tex]\( p \)[/tex] and [tex]\( q \)[/tex] must have the same sign, and their sum is negative, which means [tex]\( p \)[/tex] and [tex]\( q \)[/tex] must both be negative.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.