Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the town's total demand function, we'll need to combine the individual demand functions for the two groups: college students and other town residents.
First, let's define the inverse demand functions for each group:
- For college students: [tex]\( p = 120 - Q_1 \)[/tex]
- For other town residents: [tex]\( p = 120 - 2Q_2 \)[/tex]
Next, we need to express the quantity demanded ([tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]) in terms of the price ([tex]\(p\)[/tex]) for each group by solving these equations:
1. For college students:
[tex]\[ p = 120 - Q_1 \][/tex]
Rearrange to solve for [tex]\(Q_1\)[/tex]:
[tex]\[ Q_1 = 120 - p \][/tex]
2. For other town residents:
[tex]\[ p = 120 - 2Q_2 \][/tex]
Rearrange to solve for [tex]\(Q_2\)[/tex]:
[tex]\[ 2Q_2 = 120 - p \][/tex]
[tex]\[ Q_2 = \frac{120 - p}{2} \][/tex]
Now, the total demand [tex]\(Q_{total}\)[/tex] is the sum of [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = Q_1 + Q_2 \][/tex]
Substitute the expressions we found for [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = (120 - p) + \left( \frac{120 - p}{2} \right) \][/tex]
Combine the terms:
[tex]\[ Q_{total} = 120 - p + \frac{120 - p}{2} \][/tex]
[tex]\[ Q_{total} = 120 - p + 60 - \frac{p}{2} \][/tex]
Simplify the expression:
[tex]\[ Q_{total} = 180 - p - \frac{p}{2} \][/tex]
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
Therefore, the town's total demand function is:
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
First, let's define the inverse demand functions for each group:
- For college students: [tex]\( p = 120 - Q_1 \)[/tex]
- For other town residents: [tex]\( p = 120 - 2Q_2 \)[/tex]
Next, we need to express the quantity demanded ([tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]) in terms of the price ([tex]\(p\)[/tex]) for each group by solving these equations:
1. For college students:
[tex]\[ p = 120 - Q_1 \][/tex]
Rearrange to solve for [tex]\(Q_1\)[/tex]:
[tex]\[ Q_1 = 120 - p \][/tex]
2. For other town residents:
[tex]\[ p = 120 - 2Q_2 \][/tex]
Rearrange to solve for [tex]\(Q_2\)[/tex]:
[tex]\[ 2Q_2 = 120 - p \][/tex]
[tex]\[ Q_2 = \frac{120 - p}{2} \][/tex]
Now, the total demand [tex]\(Q_{total}\)[/tex] is the sum of [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = Q_1 + Q_2 \][/tex]
Substitute the expressions we found for [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = (120 - p) + \left( \frac{120 - p}{2} \right) \][/tex]
Combine the terms:
[tex]\[ Q_{total} = 120 - p + \frac{120 - p}{2} \][/tex]
[tex]\[ Q_{total} = 120 - p + 60 - \frac{p}{2} \][/tex]
Simplify the expression:
[tex]\[ Q_{total} = 180 - p - \frac{p}{2} \][/tex]
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
Therefore, the town's total demand function is:
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.