At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

The half-life of a certain tranquilizer in the bloodstream is 34 hours. How long will it take for the drug to decay to [tex]89 \%[/tex] of the original dosage?

Use the exponential decay model, [tex]A = A_0 e^{kt}[/tex], to solve.

[tex]\(\square\)[/tex] hours

(Round to one decimal place as needed.)


Sagot :

To determine how long it will take for the tranquilizer to decay to 89% of its original dosage, we can use the exponential decay model:

[tex]\[ A = A_0 e^{kt} \][/tex]

Here:
- [tex]\( A_0 \)[/tex] is the original amount of the tranquilizer.
- [tex]\( A \)[/tex] is the remaining amount after time [tex]\( t \)[/tex].
- [tex]\( k \)[/tex] is the decay constant.
- [tex]\( t \)[/tex] is the time.

Given:
- The half-life of the tranquilizer is 34 hours.
- The remaining percentage of the tranquilizer is 89% of the original dosage, which translates to [tex]\( A = 0.89 A_0 \)[/tex].

### Step 1: Determine the decay constant [tex]\( k \)[/tex]

At the half-life, the remaining amount is half of the original amount ([tex]\( A = \frac{A_0}{2} \)[/tex]) after 34 hours. Thus:

[tex]\[ \frac{A_0}{2} = A_0 e^{k \times 34} \][/tex]

Divide both sides by [tex]\( A_0 \)[/tex]:

[tex]\[ \frac{1}{2} = e^{k \times 34} \][/tex]

Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:

[tex]\[ \ln\left(\frac{1}{2}\right) = k \times 34 \][/tex]

Since [tex]\( \ln\left(\frac{1}{2}\right) = \ln(1) - \ln(2) = -\ln(2) \)[/tex], we have:

[tex]\[ k \times 34 = -\ln(2) \][/tex]

Thus,

[tex]\[ k = \frac{-\ln(2)}{34} \][/tex]

### Step 2: Determine the time [tex]\( t \)[/tex] for the drug to decay to 89% of the original dosage

We now need to find [tex]\( t \)[/tex] for [tex]\( A = 0.89 A_0 \)[/tex]:

[tex]\[ 0.89 A_0 = A_0 e^{k \times t} \][/tex]

Divide both sides by [tex]\( A_0 \)[/tex]:

[tex]\[ 0.89 = e^{k \times t} \][/tex]

Take the natural logarithm of both sides to solve for [tex]\( t \)[/tex]:

[tex]\[ \ln(0.89) = k \times t \][/tex]

Substitute [tex]\( k \)[/tex] from Step 1:

[tex]\[ \ln(0.89) = \left(\frac{-\ln(2)}{34}\right) \times t \][/tex]

Solving for [tex]\( t \)[/tex]:

[tex]\[ t = \frac{\ln(0.89)}{\frac{-\ln(2)}{34}} \][/tex]

### Step 3: Simplify and find the numerical value

[tex]\[ t = \frac{\ln(0.89) \times 34}{-\ln(2)} \][/tex]

### Step 4: Calculate

Using a calculator for the logarithms:

- [tex]\( \ln(0.89) \approx -0.1165 \)[/tex]
- [tex]\( \ln(2) \approx 0.6931 \)[/tex]

Therefore,

[tex]\[ t = \frac{-0.1165 \times 34}{-0.6931} \][/tex]

[tex]\[ t \approx \frac{-3.961}{-0.6931} \][/tex]

[tex]\[ t \approx 5.716 \][/tex]

### Step 5: Round to the nearest tenth

Rounding to one decimal place:

[tex]\[ t \approx 5.7 \][/tex]

So, it will take approximately [tex]\( \boxed{5.7} \)[/tex] hours for the drug to decay to 89% of its original dosage.