At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's solve the chemical reaction step by step.
1. Identify the reactants:
- Weak base: [tex]\( \text{CH}_3\text{NH}_2 \)[/tex] (methylamine)
- Strong acid: [tex]\( \text{HClO}_3 \)[/tex] (chloric acid)
2. Reaction type: This is a reaction between a weak base and a strong acid.
3. Ionic dissociation:
- The weak base [tex]\( \text{CH}_3\text{NH}_2 \)[/tex] does not fully dissociate in water, but it can accept a proton [tex]\( (\text{H}^+) \)[/tex].
- The strong acid [tex]\( \text{HClO}_3 \)[/tex] almost completely dissociates in water to give [tex]\( \text{H}^+ \)[/tex] (protons) and [tex]\( \text{ClO}_3^- \)[/tex] (chlorate ions).
4. Formation of products:
- The methylamine [tex]\( \text{CH}_3\text{NH}_2 \)[/tex] will accept a proton [tex]\( \text{H}^+ \)[/tex] from [tex]\( \text{HClO}_3 \)[/tex], forming the methylammonium ion [tex]\( \text{CH}_3\text{NH}_3^+ \)[/tex].
- The [tex]\( \text{ClO}_3^- \)[/tex] ion remains as the conjugate base.
5. Balanced chemical reaction:
- The balanced reaction can be written by combining these species:
[tex]\[ \text{CH}_3\text{NH}_2(\text{aq}) + \text{HClO}_3(\text{aq}) \rightarrow \text{CH}_3\text{NH}_3^+(\text{aq}) + \text{ClO}_3^-(\text{aq}) \][/tex]
So, the resulting acid is the methylammonium ion [tex]\( \text{CH}_3\text{NH}_3^+ \)[/tex] and the resulting base is the chlorate ion [tex]\( \text{ClO}_3^- \)[/tex].
Thus, the complete balanced chemical reaction is:
[tex]\[ \text{CH}_3\text{NH}_2(\text{aq}) + \text{HClO}_3(\text{aq}) \rightarrow \text{CH}_3\text{NH}_3^+(\text{aq}) + \text{ClO}_3^-(\text{aq}) \][/tex]
1. Identify the reactants:
- Weak base: [tex]\( \text{CH}_3\text{NH}_2 \)[/tex] (methylamine)
- Strong acid: [tex]\( \text{HClO}_3 \)[/tex] (chloric acid)
2. Reaction type: This is a reaction between a weak base and a strong acid.
3. Ionic dissociation:
- The weak base [tex]\( \text{CH}_3\text{NH}_2 \)[/tex] does not fully dissociate in water, but it can accept a proton [tex]\( (\text{H}^+) \)[/tex].
- The strong acid [tex]\( \text{HClO}_3 \)[/tex] almost completely dissociates in water to give [tex]\( \text{H}^+ \)[/tex] (protons) and [tex]\( \text{ClO}_3^- \)[/tex] (chlorate ions).
4. Formation of products:
- The methylamine [tex]\( \text{CH}_3\text{NH}_2 \)[/tex] will accept a proton [tex]\( \text{H}^+ \)[/tex] from [tex]\( \text{HClO}_3 \)[/tex], forming the methylammonium ion [tex]\( \text{CH}_3\text{NH}_3^+ \)[/tex].
- The [tex]\( \text{ClO}_3^- \)[/tex] ion remains as the conjugate base.
5. Balanced chemical reaction:
- The balanced reaction can be written by combining these species:
[tex]\[ \text{CH}_3\text{NH}_2(\text{aq}) + \text{HClO}_3(\text{aq}) \rightarrow \text{CH}_3\text{NH}_3^+(\text{aq}) + \text{ClO}_3^-(\text{aq}) \][/tex]
So, the resulting acid is the methylammonium ion [tex]\( \text{CH}_3\text{NH}_3^+ \)[/tex] and the resulting base is the chlorate ion [tex]\( \text{ClO}_3^- \)[/tex].
Thus, the complete balanced chemical reaction is:
[tex]\[ \text{CH}_3\text{NH}_2(\text{aq}) + \text{HClO}_3(\text{aq}) \rightarrow \text{CH}_3\text{NH}_3^+(\text{aq}) + \text{ClO}_3^-(\text{aq}) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.