Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the given linear system using Gauss-Jordan elimination, follow these detailed steps:
1. Write the system of equations in augmented matrix form:
[tex]\[ \begin{pmatrix} -3 & 4 & | & -6 \\ 5 & -1 & | & 10 \end{pmatrix} \][/tex]
2. Normalize the first row to make the leading coefficient (first element) 1.
Divide each element in the first row by -3:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 5 & -1 & | & 10 \end{pmatrix} \][/tex]
3. Eliminate the x-term from the second row.
Use row operations to make the element in the second row, first column (5) zero. Subtract 5 times the first row from the second row:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 0 & \frac{5}{3} & | & 0 \end{pmatrix} \][/tex]
4. Normalize the second row to make the leading coefficient (second element) 1.
Divide each element in the second row by [tex]\(\frac{5}{3}\)[/tex]:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 0 & 1 & | & 0 \end{pmatrix} \][/tex]
5. Eliminate the y-term from the first row.
Use row operations to make the element in the first row, second column [tex]\(-\frac{4}{3}\)[/tex] zero. Add [tex]\(\frac{4}{3}\)[/tex] times the second row to the first row:
[tex]\[ \begin{pmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 0 \end{pmatrix} \][/tex]
Now the augmented matrix is in reduced row-echelon form (RREF). From this matrix, we can directly read off the solutions:
[tex]\[ \begin{cases} x = 2 \\ y = 0 \end{cases} \][/tex]
So the solution to the system of equations is [tex]\((2, 0)\)[/tex].
Therefore, the best answer is:
A. (2,0)
1. Write the system of equations in augmented matrix form:
[tex]\[ \begin{pmatrix} -3 & 4 & | & -6 \\ 5 & -1 & | & 10 \end{pmatrix} \][/tex]
2. Normalize the first row to make the leading coefficient (first element) 1.
Divide each element in the first row by -3:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 5 & -1 & | & 10 \end{pmatrix} \][/tex]
3. Eliminate the x-term from the second row.
Use row operations to make the element in the second row, first column (5) zero. Subtract 5 times the first row from the second row:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 0 & \frac{5}{3} & | & 0 \end{pmatrix} \][/tex]
4. Normalize the second row to make the leading coefficient (second element) 1.
Divide each element in the second row by [tex]\(\frac{5}{3}\)[/tex]:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 0 & 1 & | & 0 \end{pmatrix} \][/tex]
5. Eliminate the y-term from the first row.
Use row operations to make the element in the first row, second column [tex]\(-\frac{4}{3}\)[/tex] zero. Add [tex]\(\frac{4}{3}\)[/tex] times the second row to the first row:
[tex]\[ \begin{pmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 0 \end{pmatrix} \][/tex]
Now the augmented matrix is in reduced row-echelon form (RREF). From this matrix, we can directly read off the solutions:
[tex]\[ \begin{cases} x = 2 \\ y = 0 \end{cases} \][/tex]
So the solution to the system of equations is [tex]\((2, 0)\)[/tex].
Therefore, the best answer is:
A. (2,0)
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.