Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the concentration of sodium ions in a 0.35 M sodium phosphate (NaPO₄) solution, follow these steps:
1. Understand the Dissociation of Sodium Phosphate (NaPO₄):
Sodium phosphate dissociates completely in water to produce sodium (Na⁺) ions and phosphate (PO₄³⁻) ions. The balanced dissociation equation is:
[tex]\[ \text{NaPO₄} \rightarrow 3\text{Na}^+ + \text{PO₄}^{3-} \][/tex]
2. Determine the Mole Ratio:
From the dissociation equation, we can observe that one molecule of sodium phosphate produces three sodium ions. This gives us a mole ratio of 1:3 between sodium phosphate and sodium ions.
3. Calculate the Concentration of Sodium Ions:
Given that the concentration of sodium phosphate is 0.35 M, and knowing the mole ratio from step 2, we can calculate the concentration of sodium ions.
[tex]\[ \text{Concentration of Na⁺ ions} = \text{Concentration of NaPO₄} \times \text{Number of Na⁺ ions per NaPO₄ molecule} \][/tex]
[tex]\[ \text{Concentration of Na⁺ ions} = 0.35\, \text{M} \times 3 \][/tex]
4. Compute the Result:
[tex]\[ \text{Concentration of Na⁺ ions} = 1.0499999999999998\, \text{M} \][/tex]
Therefore, the concentration of sodium ions in a 0.35 M sodium phosphate solution is approximately 1.05 M.
1. Understand the Dissociation of Sodium Phosphate (NaPO₄):
Sodium phosphate dissociates completely in water to produce sodium (Na⁺) ions and phosphate (PO₄³⁻) ions. The balanced dissociation equation is:
[tex]\[ \text{NaPO₄} \rightarrow 3\text{Na}^+ + \text{PO₄}^{3-} \][/tex]
2. Determine the Mole Ratio:
From the dissociation equation, we can observe that one molecule of sodium phosphate produces three sodium ions. This gives us a mole ratio of 1:3 between sodium phosphate and sodium ions.
3. Calculate the Concentration of Sodium Ions:
Given that the concentration of sodium phosphate is 0.35 M, and knowing the mole ratio from step 2, we can calculate the concentration of sodium ions.
[tex]\[ \text{Concentration of Na⁺ ions} = \text{Concentration of NaPO₄} \times \text{Number of Na⁺ ions per NaPO₄ molecule} \][/tex]
[tex]\[ \text{Concentration of Na⁺ ions} = 0.35\, \text{M} \times 3 \][/tex]
4. Compute the Result:
[tex]\[ \text{Concentration of Na⁺ ions} = 1.0499999999999998\, \text{M} \][/tex]
Therefore, the concentration of sodium ions in a 0.35 M sodium phosphate solution is approximately 1.05 M.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.