Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which equation represents a circle that contains the point [tex]\((-2, 8)\)[/tex] and has a center at [tex]\((4, 0)\)[/tex], we follow these steps:
1. Identify key components:
- The center [tex]\((h, k)\)[/tex] of the circle is [tex]\((4, 0)\)[/tex].
- One of the points on the circle is [tex]\((-2, 8)\)[/tex].
2. Calculate the radius using the distance between the center and the point on the circle:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Substitute [tex]\((x_1, y_1) = (4, 0)\)[/tex] and [tex]\((x_2, y_2) = (-2, 8)\)[/tex]:
[tex]\[ \text{Distance} = \sqrt{((-2) - 4)^2 + (8 - 0)^2} \][/tex]
Simplify inside the square root:
[tex]\[ = \sqrt{((-6)^2 + 8^2)} = \sqrt{(36 + 64)} = \sqrt{100} = 10 \][/tex]
Hence, the radius [tex]\( r \)[/tex] of the circle is 10.
3. Write the standard form equation of the circle using the calculated radius [tex]\( r \)[/tex] and the center [tex]\((h, k)\)[/tex]:
The standard form of the equation of a circle is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Substitute [tex]\( h = 4 \)[/tex], [tex]\( k = 0 \)[/tex], and [tex]\( r = 10 \)[/tex]:
[tex]\[ (x - 4)^2 + y^2 = 10^2 \][/tex]
Simplify:
[tex]\[ (x - 4)^2 + y^2 = 100 \][/tex]
4. Match the given equations to the derived equation:
- [tex]\((x - 4)^2 + y^2 = 100\)[/tex]
- [tex]\((x - 4)^2 + y^2 = 10\)[/tex]
- [tex]\(x^2 + (y - 4)^2 = 10\)[/tex]
- [tex]\(x^2 + (y - 4)^2 = 100\)[/tex]
The equation [tex]\((x - 4)^2 + y^2 = 100\)[/tex] matches the derived equation.
Therefore, the equation that represents the circle is:
[tex]\[ (x - 4)^2 + y^2 = 100 \][/tex]
1. Identify key components:
- The center [tex]\((h, k)\)[/tex] of the circle is [tex]\((4, 0)\)[/tex].
- One of the points on the circle is [tex]\((-2, 8)\)[/tex].
2. Calculate the radius using the distance between the center and the point on the circle:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Substitute [tex]\((x_1, y_1) = (4, 0)\)[/tex] and [tex]\((x_2, y_2) = (-2, 8)\)[/tex]:
[tex]\[ \text{Distance} = \sqrt{((-2) - 4)^2 + (8 - 0)^2} \][/tex]
Simplify inside the square root:
[tex]\[ = \sqrt{((-6)^2 + 8^2)} = \sqrt{(36 + 64)} = \sqrt{100} = 10 \][/tex]
Hence, the radius [tex]\( r \)[/tex] of the circle is 10.
3. Write the standard form equation of the circle using the calculated radius [tex]\( r \)[/tex] and the center [tex]\((h, k)\)[/tex]:
The standard form of the equation of a circle is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Substitute [tex]\( h = 4 \)[/tex], [tex]\( k = 0 \)[/tex], and [tex]\( r = 10 \)[/tex]:
[tex]\[ (x - 4)^2 + y^2 = 10^2 \][/tex]
Simplify:
[tex]\[ (x - 4)^2 + y^2 = 100 \][/tex]
4. Match the given equations to the derived equation:
- [tex]\((x - 4)^2 + y^2 = 100\)[/tex]
- [tex]\((x - 4)^2 + y^2 = 10\)[/tex]
- [tex]\(x^2 + (y - 4)^2 = 10\)[/tex]
- [tex]\(x^2 + (y - 4)^2 = 100\)[/tex]
The equation [tex]\((x - 4)^2 + y^2 = 100\)[/tex] matches the derived equation.
Therefore, the equation that represents the circle is:
[tex]\[ (x - 4)^2 + y^2 = 100 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.