Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the magnitude of the resultant velocity of the boat, given its components in the x and y directions, we can use the Pythagorean theorem. Here's a detailed, step-by-step solution:
1. Identify the velocities in the x and y directions:
- The boat's velocity in the y-direction ([tex]\(v_y\)[/tex]) is [tex]\(15.0 \ \text{m/s}\)[/tex].
- The current's velocity in the x-direction ([tex]\(v_x\)[/tex]) is [tex]\(4.00 \ \text{m/s}\)[/tex].
2. Understand that these velocities form a right triangle:
- One leg of the triangle is the velocity in the y-direction [tex]\(v_y = 15.0 \ \text{m/s}\)[/tex].
- The other leg of the triangle is the velocity in the x-direction [tex]\(v_x = 4.00 \ \text{m/s}\)[/tex].
3. Apply the Pythagorean theorem to find the resultant velocity ([tex]\(v\)[/tex]):
The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (the resultant velocity, [tex]\(v\)[/tex]) is equal to the sum of the squares of the lengths of the other two sides (the velocities [tex]\(v_x\)[/tex] and [tex]\(v_y\)[/tex]).
Therefore:
[tex]\[ v^2 = v_x^2 + v_y^2 \][/tex]
4. Substitute the given values:
[tex]\[ v^2 = (4.00 \ \text{m/s})^2 + (15.0 \ \text{m/s})^2 \][/tex]
5. Perform the calculations:
[tex]\[ v^2 = 4.00^2 + 15.0^2 \][/tex]
[tex]\[ v^2 = 16 + 225 \][/tex]
[tex]\[ v^2 = 241 \][/tex]
6. Take the square root of both sides to solve for [tex]\(v\)[/tex]:
[tex]\[ v = \sqrt{241} \][/tex]
7. Find the numerical value:
[tex]\[ v \approx 15.524 \ \text{m/s} \][/tex]
Thus, the magnitude of the boat's velocity is approximately [tex]\( 15.524 \ \text{m/s} \)[/tex].
1. Identify the velocities in the x and y directions:
- The boat's velocity in the y-direction ([tex]\(v_y\)[/tex]) is [tex]\(15.0 \ \text{m/s}\)[/tex].
- The current's velocity in the x-direction ([tex]\(v_x\)[/tex]) is [tex]\(4.00 \ \text{m/s}\)[/tex].
2. Understand that these velocities form a right triangle:
- One leg of the triangle is the velocity in the y-direction [tex]\(v_y = 15.0 \ \text{m/s}\)[/tex].
- The other leg of the triangle is the velocity in the x-direction [tex]\(v_x = 4.00 \ \text{m/s}\)[/tex].
3. Apply the Pythagorean theorem to find the resultant velocity ([tex]\(v\)[/tex]):
The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (the resultant velocity, [tex]\(v\)[/tex]) is equal to the sum of the squares of the lengths of the other two sides (the velocities [tex]\(v_x\)[/tex] and [tex]\(v_y\)[/tex]).
Therefore:
[tex]\[ v^2 = v_x^2 + v_y^2 \][/tex]
4. Substitute the given values:
[tex]\[ v^2 = (4.00 \ \text{m/s})^2 + (15.0 \ \text{m/s})^2 \][/tex]
5. Perform the calculations:
[tex]\[ v^2 = 4.00^2 + 15.0^2 \][/tex]
[tex]\[ v^2 = 16 + 225 \][/tex]
[tex]\[ v^2 = 241 \][/tex]
6. Take the square root of both sides to solve for [tex]\(v\)[/tex]:
[tex]\[ v = \sqrt{241} \][/tex]
7. Find the numerical value:
[tex]\[ v \approx 15.524 \ \text{m/s} \][/tex]
Thus, the magnitude of the boat's velocity is approximately [tex]\( 15.524 \ \text{m/s} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.