Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Give the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] needed to write the equation in standard form.

[tex]\[
\frac{2}{3}(x-4)(x+5)=1
\][/tex]

A. [tex]\(a = 2; b = 2; c = -43\)[/tex]
B. [tex]\(a = \frac{2}{3}; b = 1; c = -20\)[/tex]
C. [tex]\(a = 2; b = 2; c = 43\)[/tex]


Sagot :

To determine the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] needed to write the given quadratic equation in standard form, let's start with the given equation:

[tex]\[ \frac{2}{3}(x-4)(x+5) = 1 \][/tex]

First, we need to expand the left-hand side expression, [tex]\((x-4)(x+5)\)[/tex]:

1. Expand the binomials:
[tex]\[ (x-4)(x+5) = x^2 + 5x - 4x - 20 = x^2 + x - 20 \][/tex]

2. Next, multiply each term by [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \frac{2}{3} \cdot (x^2 + x - 20) = \frac{2}{3}x^2 + \frac{2}{3}x - \frac{40}{3} \][/tex]

Now, substitute this expanded form back into the equation:
[tex]\[ \frac{2}{3}x^2 + \frac{2}{3}x - \frac{40}{3} = 1 \][/tex]

To express this in the standard quadratic form [tex]\(Ax^2 + Bx + C = 0\)[/tex], we need to set the right-hand side to zero by subtracting 1 from both sides:
[tex]\[ \frac{2}{3}x^2 + \frac{2}{3}x - \frac{40}{3} - 1 = 0 \][/tex]

Simplify the right side (note that [tex]\(-1\)[/tex] is equivalent to [tex]\(-\frac{3}{3}\)[/tex] in fractional form):
[tex]\[ \frac{2}{3}x^2 + \frac{2}{3}x - \frac{40}{3} - \frac{3}{3} = 0 \][/tex]

Combine the constants:
[tex]\[ \frac{2}{3}x^2 + \frac{2}{3}x - \frac{43}{3} = 0 \][/tex]

Comparing this with the standard form [tex]\(Ax^2 + Bx + C = 0\)[/tex], we identify the coefficients [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] as follows:

[tex]\[ A = \frac{2}{3}, \quad B = \frac{2}{3}, \quad C = -\frac{43}{3} \][/tex]

The numerical results verify that:
[tex]\[ A = 0.6666666666666666, \quad B = 0.6666666666666666, \quad C = -14.333333333333334 \][/tex]

Therefore, the correct values for the coefficients are:
\[
A = \frac{2}{3}, \quad B = \frac{2}{3}, \quad C = -\frac{43}{3}
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.