Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine if the triangle with side lengths 2 inches, 5 inches, and 4 inches is an acute triangle, we need to follow a systematic approach:
1. Understand acute triangles:
- A triangle is acute if all its interior angles are less than 90 degrees.
- For a triangle with sides [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(c\)[/tex] is the longest side), it is acute if the sum of the squares of the two smaller sides is greater than the square of the longest side, i.e., [tex]\(a^2 + b^2 > c^2\)[/tex].
2. Identify the sides:
- Here, [tex]\(a = 2\)[/tex] inches, [tex]\(b = 4\)[/tex] inches, and [tex]\(c = 5\)[/tex] inches (the longest side).
3. Apply the conditions for an acute triangle:
- We need to verify if the inequality [tex]\(a^2 + b^2 > c^2\)[/tex] holds.
4. Compute the squares:
- Calculate [tex]\(a^2\)[/tex]: [tex]\(2^2 = 4\)[/tex]
- Calculate [tex]\(b^2\)[/tex]: [tex]\(4^2 = 16\)[/tex]
- Calculate [tex]\(c^2\)[/tex]: [tex]\(5^2 = 25\)[/tex]
5. Check the condition:
- Compute [tex]\(a^2 + b^2\)[/tex]: [tex]\(4 + 16 = 20\)[/tex]
- Compare with [tex]\(c^2\)[/tex]: [tex]\(20 < 25\)[/tex]
Since [tex]\(a^2 + b^2\)[/tex] is less than [tex]\(c^2\)[/tex] ([tex]\(20 < 25\)[/tex]), the condition for an acute triangle is not met.
Thus, the best explanation is:
- The triangle is not acute because [tex]\(2^2 + 4^2 < 5^2\)[/tex].
1. Understand acute triangles:
- A triangle is acute if all its interior angles are less than 90 degrees.
- For a triangle with sides [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(c\)[/tex] is the longest side), it is acute if the sum of the squares of the two smaller sides is greater than the square of the longest side, i.e., [tex]\(a^2 + b^2 > c^2\)[/tex].
2. Identify the sides:
- Here, [tex]\(a = 2\)[/tex] inches, [tex]\(b = 4\)[/tex] inches, and [tex]\(c = 5\)[/tex] inches (the longest side).
3. Apply the conditions for an acute triangle:
- We need to verify if the inequality [tex]\(a^2 + b^2 > c^2\)[/tex] holds.
4. Compute the squares:
- Calculate [tex]\(a^2\)[/tex]: [tex]\(2^2 = 4\)[/tex]
- Calculate [tex]\(b^2\)[/tex]: [tex]\(4^2 = 16\)[/tex]
- Calculate [tex]\(c^2\)[/tex]: [tex]\(5^2 = 25\)[/tex]
5. Check the condition:
- Compute [tex]\(a^2 + b^2\)[/tex]: [tex]\(4 + 16 = 20\)[/tex]
- Compare with [tex]\(c^2\)[/tex]: [tex]\(20 < 25\)[/tex]
Since [tex]\(a^2 + b^2\)[/tex] is less than [tex]\(c^2\)[/tex] ([tex]\(20 < 25\)[/tex]), the condition for an acute triangle is not met.
Thus, the best explanation is:
- The triangle is not acute because [tex]\(2^2 + 4^2 < 5^2\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.