Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the equation of a line in slope-intercept form that passes through a given point and has a specified slope, we use the slope-intercept form equation, which is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
We have the following information:
- The point [tex]\((-8, -1)\)[/tex], which means [tex]\( x_1 = -8 \)[/tex] and [tex]\( y_1 = -1 \)[/tex].
- The slope [tex]\( m = -\frac{5}{4} \)[/tex].
First, we substitute the coordinates of the point and the slope into the general slope-intercept form equation to solve for [tex]\( b \)[/tex]:
[tex]\[ y_1 = mx_1 + b \][/tex]
Substituting [tex]\( x_1 = -8 \)[/tex], [tex]\( y_1 = -1 \)[/tex], and [tex]\( m = -\frac{5}{4} \)[/tex]:
[tex]\[ -1 = \left( -\frac{5}{4} \right)(-8) + b \][/tex]
Next, we simplify and solve for [tex]\( b \)[/tex]:
[tex]\[ -1 = \left( -\frac{5}{4} \right)(-8) + b \][/tex]
[tex]\[ -1 = \frac{40}{4} + b \][/tex]
[tex]\[ -1 = 10 + b \][/tex]
To isolate [tex]\( b \)[/tex], we subtract 10 from both sides of the equation:
[tex]\[ -1 - 10 = b \][/tex]
[tex]\[ b = -11 \][/tex]
Now that we have the value of the y-intercept [tex]\( b = -11 \)[/tex], we substitute [tex]\( m \)[/tex] and [tex]\( b \)[/tex] back into the slope-intercept form equation to get the final equation of the line:
[tex]\[ y = -\frac{5}{4}x - 11 \][/tex]
Thus, the equation of the line in slope-intercept form is:
[tex]\[ y = -\frac{5}{4}x - 11 \][/tex]
We have the following information:
- The point [tex]\((-8, -1)\)[/tex], which means [tex]\( x_1 = -8 \)[/tex] and [tex]\( y_1 = -1 \)[/tex].
- The slope [tex]\( m = -\frac{5}{4} \)[/tex].
First, we substitute the coordinates of the point and the slope into the general slope-intercept form equation to solve for [tex]\( b \)[/tex]:
[tex]\[ y_1 = mx_1 + b \][/tex]
Substituting [tex]\( x_1 = -8 \)[/tex], [tex]\( y_1 = -1 \)[/tex], and [tex]\( m = -\frac{5}{4} \)[/tex]:
[tex]\[ -1 = \left( -\frac{5}{4} \right)(-8) + b \][/tex]
Next, we simplify and solve for [tex]\( b \)[/tex]:
[tex]\[ -1 = \left( -\frac{5}{4} \right)(-8) + b \][/tex]
[tex]\[ -1 = \frac{40}{4} + b \][/tex]
[tex]\[ -1 = 10 + b \][/tex]
To isolate [tex]\( b \)[/tex], we subtract 10 from both sides of the equation:
[tex]\[ -1 - 10 = b \][/tex]
[tex]\[ b = -11 \][/tex]
Now that we have the value of the y-intercept [tex]\( b = -11 \)[/tex], we substitute [tex]\( m \)[/tex] and [tex]\( b \)[/tex] back into the slope-intercept form equation to get the final equation of the line:
[tex]\[ y = -\frac{5}{4}x - 11 \][/tex]
Thus, the equation of the line in slope-intercept form is:
[tex]\[ y = -\frac{5}{4}x - 11 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.