Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the system of inequalities graphically and determine whether the solution region is bounded or unbounded, follow these steps:
### Step 1: Understanding the Inequalities
We have the following system of inequalities:
1. [tex]\( x + 2 y \leq 4 \)[/tex]
2. [tex]\( x \geq 0 \)[/tex]
3. [tex]\( y \geq 0 \)[/tex]
### Step 2: Plotting the Boundary Lines
First, consider the equality for each inequality:
1. [tex]\( x + 2 y = 4 \)[/tex]
2. [tex]\( x = 0 \)[/tex]
3. [tex]\( y = 0 \)[/tex]
- [tex]\( x + 2 y = 4 \)[/tex]:
This is a straight line. We can find the intercepts:
- For [tex]\( x \)[/tex]-intercept ([tex]\(y = 0\)[/tex]):
[tex]\( x + 2(0) = 4 \Rightarrow x = 4 \)[/tex]
- For [tex]\( y \)[/tex]-intercept ([tex]\(x = 0\)[/tex]):
[tex]\( 0 + 2 y = 4 \Rightarrow 2 y = 4 \Rightarrow y = 2 \)[/tex]
So, the line passes through points [tex]\( (4, 0) \)[/tex] and [tex]\( (0, 2) \)[/tex].
- [tex]\( x = 0 \)[/tex]:
This is the [tex]\( y \)[/tex]-axis.
- [tex]\( y = 0 \)[/tex]:
This is the [tex]\( x \)[/tex]-axis.
### Step 3: Shading the Regions
- For [tex]\( x + 2 y \leq 4 \)[/tex]: We shade the region below the line [tex]\( x + 2 y = 4 \)[/tex].
- For [tex]\( x \geq 0 \)[/tex]: We shade the region to the right of the [tex]\( y \)[/tex]-axis ([tex]\( x = 0 \)[/tex]).
- For [tex]\( y \geq 0 \)[/tex]: We shade the region above the [tex]\( x \)[/tex]-axis ([tex]\( y = 0 \)[/tex]).
### Step 4: Determining the Solution Region
The solution region is the intersection of all these shaded regions. The feasible region is bounded by the lines [tex]\( x + 2 y = 4 \)[/tex], [tex]\( x = 0 \)[/tex], and [tex]\( y = 0 \)[/tex].
### Step 5: Identifying the Corner Points
The corner points of the feasible solution region (where lines intersect) can be calculated:
1. Intersection of [tex]\( x + 2 y = 4 \)[/tex] and [tex]\( x = 0 \)[/tex]:
- Set [tex]\( x = 0 \)[/tex] in [tex]\( x + 2 y = 4 \)[/tex]:
[tex]\( 0 + 2 y = 4 \Rightarrow y = 2 \)[/tex]
- Coordinate: [tex]\( (0, 2) \)[/tex]
2. Intersection of [tex]\( x + 2 y = 4 \)[/tex] and [tex]\( y = 0 \)[/tex]:
- Set [tex]\( y = 0 \)[/tex] in [tex]\( x + 2 y = 4 \)[/tex]:
[tex]\( x + 2(0) = 4 \Rightarrow x = 4 \)[/tex]
- Coordinate: [tex]\( (4, 0) \)[/tex]
3. Intersection of [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex]:
- Coordinate: [tex]\( (0, 0) \)[/tex]
### Step 6: Conclusion
- The solution region is bounded (as it is restricted by the lines and does not extend infinitely).
- The coordinates of the corner points are:
[tex]\[ (0, 0), (0, 2), (4, 0) \][/tex]
So, to summarize:
- The solution region is: Bounded
- The coordinates of each corner point: [tex]\((0, 0)\)[/tex], [tex]\((0, 2)\)[/tex], [tex]\((4, 0)\)[/tex]
### Step 1: Understanding the Inequalities
We have the following system of inequalities:
1. [tex]\( x + 2 y \leq 4 \)[/tex]
2. [tex]\( x \geq 0 \)[/tex]
3. [tex]\( y \geq 0 \)[/tex]
### Step 2: Plotting the Boundary Lines
First, consider the equality for each inequality:
1. [tex]\( x + 2 y = 4 \)[/tex]
2. [tex]\( x = 0 \)[/tex]
3. [tex]\( y = 0 \)[/tex]
- [tex]\( x + 2 y = 4 \)[/tex]:
This is a straight line. We can find the intercepts:
- For [tex]\( x \)[/tex]-intercept ([tex]\(y = 0\)[/tex]):
[tex]\( x + 2(0) = 4 \Rightarrow x = 4 \)[/tex]
- For [tex]\( y \)[/tex]-intercept ([tex]\(x = 0\)[/tex]):
[tex]\( 0 + 2 y = 4 \Rightarrow 2 y = 4 \Rightarrow y = 2 \)[/tex]
So, the line passes through points [tex]\( (4, 0) \)[/tex] and [tex]\( (0, 2) \)[/tex].
- [tex]\( x = 0 \)[/tex]:
This is the [tex]\( y \)[/tex]-axis.
- [tex]\( y = 0 \)[/tex]:
This is the [tex]\( x \)[/tex]-axis.
### Step 3: Shading the Regions
- For [tex]\( x + 2 y \leq 4 \)[/tex]: We shade the region below the line [tex]\( x + 2 y = 4 \)[/tex].
- For [tex]\( x \geq 0 \)[/tex]: We shade the region to the right of the [tex]\( y \)[/tex]-axis ([tex]\( x = 0 \)[/tex]).
- For [tex]\( y \geq 0 \)[/tex]: We shade the region above the [tex]\( x \)[/tex]-axis ([tex]\( y = 0 \)[/tex]).
### Step 4: Determining the Solution Region
The solution region is the intersection of all these shaded regions. The feasible region is bounded by the lines [tex]\( x + 2 y = 4 \)[/tex], [tex]\( x = 0 \)[/tex], and [tex]\( y = 0 \)[/tex].
### Step 5: Identifying the Corner Points
The corner points of the feasible solution region (where lines intersect) can be calculated:
1. Intersection of [tex]\( x + 2 y = 4 \)[/tex] and [tex]\( x = 0 \)[/tex]:
- Set [tex]\( x = 0 \)[/tex] in [tex]\( x + 2 y = 4 \)[/tex]:
[tex]\( 0 + 2 y = 4 \Rightarrow y = 2 \)[/tex]
- Coordinate: [tex]\( (0, 2) \)[/tex]
2. Intersection of [tex]\( x + 2 y = 4 \)[/tex] and [tex]\( y = 0 \)[/tex]:
- Set [tex]\( y = 0 \)[/tex] in [tex]\( x + 2 y = 4 \)[/tex]:
[tex]\( x + 2(0) = 4 \Rightarrow x = 4 \)[/tex]
- Coordinate: [tex]\( (4, 0) \)[/tex]
3. Intersection of [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex]:
- Coordinate: [tex]\( (0, 0) \)[/tex]
### Step 6: Conclusion
- The solution region is bounded (as it is restricted by the lines and does not extend infinitely).
- The coordinates of the corner points are:
[tex]\[ (0, 0), (0, 2), (4, 0) \][/tex]
So, to summarize:
- The solution region is: Bounded
- The coordinates of each corner point: [tex]\((0, 0)\)[/tex], [tex]\((0, 2)\)[/tex], [tex]\((4, 0)\)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.