Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's solve the complex multiplication step by step.
We need to compute the product of two complex numbers: [tex]$(6 + 4i)(3i)$[/tex].
1. First, we'll use the distributive property of multiplication over addition (also known as the FOIL method in algebra) to expand the product:
[tex]$(6 + 4i)(3i) = 6 \cdot 3i + 4i \cdot 3i.$[/tex]
2. Now, let's calculate each term individually:
- For the first term: [tex]\( 6 \cdot 3i \)[/tex]:
[tex]\[ 6 \cdot 3i = 18i. \][/tex]
- For the second term: [tex]\( 4i \cdot 3i \)[/tex]:
[tex]\[ 4i \cdot 3i = 12i^2. \][/tex]
3. Recall that [tex]\( i^2 = -1 \)[/tex]. Thus, we can simplify the second term:
[tex]\[ 12i^2 = 12(-1) = -12. \][/tex]
4. Next, we combine the simplified terms:
[tex]\[ 18i + (-12) = -12 + 18i. \][/tex]
5. Finally, we write the final expression in standard form for a complex number (a + bi).
The product of the complex numbers [tex]\( (6 + 4i) \)[/tex] and [tex]\( (3i) \)[/tex] is:
[tex]\[ -12 + 18i. \][/tex]
Comparing this result with the options given, the correct answer is:
[tex]\[ 12 + 18i. \][/tex]
We need to compute the product of two complex numbers: [tex]$(6 + 4i)(3i)$[/tex].
1. First, we'll use the distributive property of multiplication over addition (also known as the FOIL method in algebra) to expand the product:
[tex]$(6 + 4i)(3i) = 6 \cdot 3i + 4i \cdot 3i.$[/tex]
2. Now, let's calculate each term individually:
- For the first term: [tex]\( 6 \cdot 3i \)[/tex]:
[tex]\[ 6 \cdot 3i = 18i. \][/tex]
- For the second term: [tex]\( 4i \cdot 3i \)[/tex]:
[tex]\[ 4i \cdot 3i = 12i^2. \][/tex]
3. Recall that [tex]\( i^2 = -1 \)[/tex]. Thus, we can simplify the second term:
[tex]\[ 12i^2 = 12(-1) = -12. \][/tex]
4. Next, we combine the simplified terms:
[tex]\[ 18i + (-12) = -12 + 18i. \][/tex]
5. Finally, we write the final expression in standard form for a complex number (a + bi).
The product of the complex numbers [tex]\( (6 + 4i) \)[/tex] and [tex]\( (3i) \)[/tex] is:
[tex]\[ -12 + 18i. \][/tex]
Comparing this result with the options given, the correct answer is:
[tex]\[ 12 + 18i. \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.