Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the standard form of the given equation [tex]\( x^2 - 3 = 2x - 4x^2 + 6 \)[/tex], we need to rearrange all terms so that we have a single quadratic expression set equal to zero.
Here is the step-by-step process:
1. Write down the original equation:
[tex]\[ x^2 - 3 = 2x - 4x^2 + 6 \][/tex]
2. Move all terms to the left side to set the equation to zero:
[tex]\[ x^2 - 3 - 2x + 4x^2 - 6 = 0 \][/tex]
3. Combine the like terms on the left side:
- Combine the [tex]\( x^2 \)[/tex] terms:
[tex]\[ x^2 + 4x^2 = 5x^2 \][/tex]
- Combine the linear terms:
[tex]\[ -2x \][/tex]
- Combine the constant terms:
[tex]\[ -3 - 6 = -9 \][/tex]
Putting these together, we get:
[tex]\[ 5x^2 - 2x - 9 = 0 \][/tex]
Thus, the standard form of the equation [tex]\( x^2 - 3 = 2x - 4x^2 + 6 \)[/tex] is:
[tex]\[ \boxed{5x^2 - 2x - 9 = 0} \][/tex]
So, the correct answer is:
[tex]\[ 5x^2 - 2x - 9 = 0 \][/tex]
Here is the step-by-step process:
1. Write down the original equation:
[tex]\[ x^2 - 3 = 2x - 4x^2 + 6 \][/tex]
2. Move all terms to the left side to set the equation to zero:
[tex]\[ x^2 - 3 - 2x + 4x^2 - 6 = 0 \][/tex]
3. Combine the like terms on the left side:
- Combine the [tex]\( x^2 \)[/tex] terms:
[tex]\[ x^2 + 4x^2 = 5x^2 \][/tex]
- Combine the linear terms:
[tex]\[ -2x \][/tex]
- Combine the constant terms:
[tex]\[ -3 - 6 = -9 \][/tex]
Putting these together, we get:
[tex]\[ 5x^2 - 2x - 9 = 0 \][/tex]
Thus, the standard form of the equation [tex]\( x^2 - 3 = 2x - 4x^2 + 6 \)[/tex] is:
[tex]\[ \boxed{5x^2 - 2x - 9 = 0} \][/tex]
So, the correct answer is:
[tex]\[ 5x^2 - 2x - 9 = 0 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.