At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

How many possible triangles can be created if [tex]$m \angle = \frac{\pi}{6}, c=10, \text{ and } b=5$[/tex]?

A. 1 triangle
B. 2 triangles
C. 0 triangles
D. Cannot be determined based on the given information


Sagot :

To determine how many possible triangles can be created given [tex]\( \angle A = 8 - \frac{\pi}{6} \)[/tex], [tex]\( c = 10 \)[/tex], and [tex]\( b = 5 \)[/tex], we need to analyze the information using the Law of Sines.

1. Establish the Given Information:
- Angle [tex]\( A \)[/tex] given in radians: [tex]\( A = 8 - \frac{\pi}{6} \)[/tex]
- Side [tex]\( c = 10 \)[/tex]
- Side [tex]\( b = 5 \)[/tex]

2. Law of Sines:
The Law of Sines states:
[tex]\[ \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \][/tex]

However, we only have information about angle [tex]\( A \)[/tex], side [tex]\( b \)[/tex], and side [tex]\( c \)[/tex]. To use the Law of Sines to find angle [tex]\( B \)[/tex], we need side [tex]\( a \)[/tex], but since [tex]\( a \)[/tex] is not given, we will use the Law of Sines in the following form to find [tex]\( \sin B \)[/tex]:
[tex]\[ \sin A \cdot b = \sin B \cdot c \][/tex]

3. Calculate [tex]\( \sin A \)[/tex]:
Since [tex]\( A = 8 - \frac{\pi}{6} \)[/tex], we find [tex]\( \sin A \)[/tex].

4. Solve for [tex]\( \sin B \)[/tex]:
By rearranging the equation:
[tex]\[ \sin B = \frac{b \cdot \sin A}{c} \][/tex]
Using our given values:
[tex]\[ \sin B = \frac{5 \cdot \sin (8 - \frac{\pi}{6})}{10} = \frac{1}{2} \sin (8 - \frac{\pi}{6}) \][/tex]

5. Consider the Range of Sine Function:
The sine of an angle must be within the range of -1 to 1. If [tex]\( \sin B \)[/tex] falls within this range, we can have either 1 or 2 possible triangles. Specifically, if [tex]\( \sin B \)[/tex] is between -1 and 1:
- There can be two solutions for [tex]\( B \)[/tex]:
- [tex]\( B_1 = \sin^{-1}(\sin B) \)[/tex]
- [tex]\( B_2 = \pi - B_1 \)[/tex]
- Only if both [tex]\( B_1 \)[/tex] and [tex]\( B_2 \)[/tex] are valid angles (i.e., they sum up to less than [tex]\( \pi \)[/tex] when added to [tex]\( A \)[/tex]), there will be 2 triangles.

6. Determine the Number of Possible Triangles:
Given [tex]\( \sin B \)[/tex] meets the criteria to have possible solutions:
- One triangular solution when [tex]\( B = \sin^{-1}(\sin B) \)[/tex]
- Another possible triangular solution considering the supplementary angle [tex]\( \pi - \sin^{-1}(\sin B) \)[/tex]

Given the provided conditions and solving [tex]\( \sin B \)[/tex], the result indicates that there are indeed two feasible triangles that can be constructed. Thus, the number of possible triangles is:

[tex]\[ 2 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.