Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the density of the stone, we need to follow a series of steps involving the given measurements. Let's go through the problem step-by-step:
1. Identify the Given Values:
- Mass of the stone: [tex]\( 112 \)[/tex] grams
- Initial volume of water in the graduated cylinder: [tex]\( 50 \)[/tex] cm[tex]\(^3\)[/tex]
- Final volume of water after the stone is fully immersed: [tex]\( 95 \)[/tex] cm[tex]\(^3\)[/tex]
2. Calculate the Volume of the Stone:
- When the stone is immersed in the water, it displaces an amount of water equal to its own volume.
- The volume of the stone is the difference between the final volume and the initial volume of the water.
[tex]\[ \text{Volume of the stone} = \text{Final water volume} - \text{Initial water volume} \][/tex]
[tex]\[ \text{Volume of the stone} = 95 \text{ cm}^3 - 50 \text{ cm}^3 = 45 \text{ cm}^3 \][/tex]
3. Calculate the Density of the Stone:
- Density (ρ) is defined as mass per unit volume.
- The formula for density is:
[tex]\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} \][/tex]
- Using the values we have:
[tex]\[ \text{Density of the stone} = \frac{112 \text{ g}}{45 \text{ cm}^3} \][/tex]
- Simplifying this fraction:
[tex]\[ \text{Density of the stone} \approx 2.49 \text{ g/cm}^3 \][/tex]
4. Conclusion:
- The volume of the stone is [tex]\( 45 \)[/tex] cm[tex]\(^3\)[/tex].
- The density of the stone is approximately [tex]\( 2.49 \)[/tex] g/cm[tex]\(^3\)[/tex].
By following these steps, we've determined that the stone has a volume of 45 cm³ and a density of approximately 2.49 g/cm³.
1. Identify the Given Values:
- Mass of the stone: [tex]\( 112 \)[/tex] grams
- Initial volume of water in the graduated cylinder: [tex]\( 50 \)[/tex] cm[tex]\(^3\)[/tex]
- Final volume of water after the stone is fully immersed: [tex]\( 95 \)[/tex] cm[tex]\(^3\)[/tex]
2. Calculate the Volume of the Stone:
- When the stone is immersed in the water, it displaces an amount of water equal to its own volume.
- The volume of the stone is the difference between the final volume and the initial volume of the water.
[tex]\[ \text{Volume of the stone} = \text{Final water volume} - \text{Initial water volume} \][/tex]
[tex]\[ \text{Volume of the stone} = 95 \text{ cm}^3 - 50 \text{ cm}^3 = 45 \text{ cm}^3 \][/tex]
3. Calculate the Density of the Stone:
- Density (ρ) is defined as mass per unit volume.
- The formula for density is:
[tex]\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} \][/tex]
- Using the values we have:
[tex]\[ \text{Density of the stone} = \frac{112 \text{ g}}{45 \text{ cm}^3} \][/tex]
- Simplifying this fraction:
[tex]\[ \text{Density of the stone} \approx 2.49 \text{ g/cm}^3 \][/tex]
4. Conclusion:
- The volume of the stone is [tex]\( 45 \)[/tex] cm[tex]\(^3\)[/tex].
- The density of the stone is approximately [tex]\( 2.49 \)[/tex] g/cm[tex]\(^3\)[/tex].
By following these steps, we've determined that the stone has a volume of 45 cm³ and a density of approximately 2.49 g/cm³.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.