Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's solve this step-by-step.
1. Understanding the problem:
- The sides of the parallelogram are in the ratio 2:3.
- The perimeter of the parallelogram is 25 cm.
2. Setting up the variables:
- Let the lengths of the sides be represented by [tex]\(2x\)[/tex] and [tex]\(3x\)[/tex], where [tex]\(x\)[/tex] is the common multiplier.
3. Perimeter of the parallelogram:
- The perimeter of a parallelogram is given by [tex]\(2 \times (\text{side}_a + \text{side}_b)\)[/tex].
- Plug in the lengths of the sides in the formula:
[tex]\[ \text{Perimeter} = 2 \times (2x + 3x) \][/tex]
- Simplify the expression:
[tex]\[ \text{Perimeter} = 2 \times 5x \][/tex]
[tex]\[ \text{Perimeter} = 10x \][/tex]
- We know the perimeter is 25 cm, so:
[tex]\[ 10x = 25 \][/tex]
4. Solving for [tex]\(x\)[/tex]:
- Divide both sides of the equation by 10:
[tex]\[ x = \frac{25}{10} \][/tex]
- Simplify the fraction:
[tex]\[ x = 2.5 \][/tex]
5. Calculating the lengths of the sides:
- Now that we have [tex]\(x = 2.5\)[/tex]:
- The length of the first side [tex]\(2x\)[/tex]:
[tex]\[ 2x = 2 \times 2.5 = 5 \text{ cm} \][/tex]
- The length of the second side [tex]\(3x\)[/tex]:
[tex]\[ 3x = 3 \times 2.5 = 7.5 \text{ cm} \][/tex]
So, the lengths of the sides of the parallelogram are 5 cm and 7.5 cm.
1. Understanding the problem:
- The sides of the parallelogram are in the ratio 2:3.
- The perimeter of the parallelogram is 25 cm.
2. Setting up the variables:
- Let the lengths of the sides be represented by [tex]\(2x\)[/tex] and [tex]\(3x\)[/tex], where [tex]\(x\)[/tex] is the common multiplier.
3. Perimeter of the parallelogram:
- The perimeter of a parallelogram is given by [tex]\(2 \times (\text{side}_a + \text{side}_b)\)[/tex].
- Plug in the lengths of the sides in the formula:
[tex]\[ \text{Perimeter} = 2 \times (2x + 3x) \][/tex]
- Simplify the expression:
[tex]\[ \text{Perimeter} = 2 \times 5x \][/tex]
[tex]\[ \text{Perimeter} = 10x \][/tex]
- We know the perimeter is 25 cm, so:
[tex]\[ 10x = 25 \][/tex]
4. Solving for [tex]\(x\)[/tex]:
- Divide both sides of the equation by 10:
[tex]\[ x = \frac{25}{10} \][/tex]
- Simplify the fraction:
[tex]\[ x = 2.5 \][/tex]
5. Calculating the lengths of the sides:
- Now that we have [tex]\(x = 2.5\)[/tex]:
- The length of the first side [tex]\(2x\)[/tex]:
[tex]\[ 2x = 2 \times 2.5 = 5 \text{ cm} \][/tex]
- The length of the second side [tex]\(3x\)[/tex]:
[tex]\[ 3x = 3 \times 2.5 = 7.5 \text{ cm} \][/tex]
So, the lengths of the sides of the parallelogram are 5 cm and 7.5 cm.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.