At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Find the equation of the line through the point [tex]\((9,-10)\)[/tex] that is perpendicular to the line with the equation [tex]\(y = -\frac{4}{3}x + 14\)[/tex].

The equation is [tex]\(\square\)[/tex]. (Be sure to enter your answer as an equation.)


Sagot :

To find the equation of the line that passes through the point [tex]\((9, -10)\)[/tex] and is perpendicular to the line with equation [tex]\(y = -\frac{4}{3}x + 14\)[/tex], follow these steps:

1. Identify the slope of the given line:
The slope of the given line [tex]\(y = -\frac{4}{3}x + 14\)[/tex] is [tex]\(-\frac{4}{3}\)[/tex].

2. Find the perpendicular slope:
The slope of a line that is perpendicular to another line is the negative reciprocal of the slope of the original line.
So, if the original slope is [tex]\(-\frac{4}{3}\)[/tex], the perpendicular slope ([tex]\(m\)[/tex]) is:
[tex]\[ m = -\frac{1}{-\frac{4}{3}} = \frac{3}{4} \][/tex]

3. Use the point-slope form of the equation:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is the given point.
Plugging in the perpendicular slope [tex]\(m = \frac{3}{4}\)[/tex] and the point [tex]\((9, -10)\)[/tex], we get:
[tex]\[ y - (-10) = \frac{3}{4}(x - 9) \][/tex]
Simplify:
[tex]\[ y + 10 = \frac{3}{4}(x - 9) \][/tex]

4. Distribute and simplify:
Now, distribute [tex]\(\frac{3}{4}\)[/tex] to [tex]\(x - 9\)[/tex]:
[tex]\[ y + 10 = \frac{3}{4}x - \frac{3}{4} \cdot 9 \][/tex]
[tex]\[ y + 10 = \frac{3}{4}x - \frac{27}{4} \][/tex]
Subtract 10 from both sides to isolate [tex]\(y\)[/tex]:
[tex]\[ y = \frac{3}{4}x - \frac{27}{4} - 10 \][/tex]
Express [tex]\(-10\)[/tex] with a common denominator:
[tex]\[ -10 = -\frac{40}{4} \][/tex]
Substitute this back into the equation:
[tex]\[ y = \frac{3}{4}x - \frac{27}{4} - \frac{40}{4} \][/tex]
Combine the fractions:
[tex]\[ y = \frac{3}{4}x - \frac{67}{4} \][/tex]

Thus, the equation of the line that passes through [tex]\((9, -10)\)[/tex] and is perpendicular to [tex]\(y = -\frac{4}{3}x + 14\)[/tex] is:
[tex]\[ y = \frac{3}{4}x - \frac{67}{4} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.