Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's walk through the solution to determine the best fit equation for the given data and then use it to make a prediction for the savings deposit at month 20.
The given data is:
[tex]\[ \begin{array}{|c|c|} \hline \text{Month} & \text{Savings Deposit (S)} \\ \hline 0 & 10.80 \\ \hline 1 & 8.20 \\ \hline 2 & 6.00 \\ \hline 4 & 2.80 \\ \hline 7 & 1.00 \\ \hline 12 & 6.00 \\ \hline \end{array} \][/tex]
We have the following choices for the best fit equations and the approximate savings deposit at month 20:
A. [tex]\( y = 0.2 x^2 - 2.8 x + 10.8 \)[/tex] and approximately \[tex]$35 B. \( y = 0.7 x^2 - 4.9 x + 11.6 \) and approximately \$[/tex]35
C. [tex]\( y = 0.2 x^2 - 2.8 x + 10.8 \)[/tex] and approximately \[tex]$194 D. \( y = 0.7 x^2 - 4.9 x + 11.6 \) and approximately \$[/tex]194
To determine the best fit equation, we consider the given choices and calculate the savings deposit value at month 20 using each equation.
First, let's consider equation [tex]\( y = 0.2x^2 - 2.8x + 10.8 \)[/tex].
To find the savings deposit at month 20 ([tex]\(x = 20\)[/tex]):
[tex]\[ y = 0.2(20)^2 - 2.8(20) + 10.8 \][/tex]
From this equation, we know that [tex]\( y \approx 34.8 \)[/tex].
Next, let's check the second form of the equation, [tex]\( y = 0.7x^2 - 4.9x + 11.6 \)[/tex].
To find the savings deposit at month 20 ([tex]\(x = 20\)[/tex]):
[tex]\[ y = 0.7(20)^2 - 4.9(20) + 11.6 \][/tex]
After performing the calculations, we obtain a significantly different numerical result.
Given the options and the calculations, we notice that for the choice of equation [tex]$y = 0.2x^2 - 2.8x + 10.8$[/tex]:
- It returns approximately \[tex]$34.8 at month 20 - There is no fit consistent with the other approximations. Therefore, the correct answer is: \[ \boxed{A. \, y = 0.2 x^2 - 2.8 x + 10.8 \, \text{and approximately} \, \$[/tex]35 }
\]
The given data is:
[tex]\[ \begin{array}{|c|c|} \hline \text{Month} & \text{Savings Deposit (S)} \\ \hline 0 & 10.80 \\ \hline 1 & 8.20 \\ \hline 2 & 6.00 \\ \hline 4 & 2.80 \\ \hline 7 & 1.00 \\ \hline 12 & 6.00 \\ \hline \end{array} \][/tex]
We have the following choices for the best fit equations and the approximate savings deposit at month 20:
A. [tex]\( y = 0.2 x^2 - 2.8 x + 10.8 \)[/tex] and approximately \[tex]$35 B. \( y = 0.7 x^2 - 4.9 x + 11.6 \) and approximately \$[/tex]35
C. [tex]\( y = 0.2 x^2 - 2.8 x + 10.8 \)[/tex] and approximately \[tex]$194 D. \( y = 0.7 x^2 - 4.9 x + 11.6 \) and approximately \$[/tex]194
To determine the best fit equation, we consider the given choices and calculate the savings deposit value at month 20 using each equation.
First, let's consider equation [tex]\( y = 0.2x^2 - 2.8x + 10.8 \)[/tex].
To find the savings deposit at month 20 ([tex]\(x = 20\)[/tex]):
[tex]\[ y = 0.2(20)^2 - 2.8(20) + 10.8 \][/tex]
From this equation, we know that [tex]\( y \approx 34.8 \)[/tex].
Next, let's check the second form of the equation, [tex]\( y = 0.7x^2 - 4.9x + 11.6 \)[/tex].
To find the savings deposit at month 20 ([tex]\(x = 20\)[/tex]):
[tex]\[ y = 0.7(20)^2 - 4.9(20) + 11.6 \][/tex]
After performing the calculations, we obtain a significantly different numerical result.
Given the options and the calculations, we notice that for the choice of equation [tex]$y = 0.2x^2 - 2.8x + 10.8$[/tex]:
- It returns approximately \[tex]$34.8 at month 20 - There is no fit consistent with the other approximations. Therefore, the correct answer is: \[ \boxed{A. \, y = 0.2 x^2 - 2.8 x + 10.8 \, \text{and approximately} \, \$[/tex]35 }
\]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.