Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the value of [tex]\(\sqrt[4]{81 y^{12}}\)[/tex], we need to simplify the given expression step-by-step.
1. Understand the components of the expression:
- [tex]\(81 y^{12}\)[/tex] is the expression inside the fourth root.
- First, we will separate the constants and the variable parts: [tex]\(81\)[/tex] and [tex]\(y^{12}\)[/tex].
2. Deal with the constant term (81):
- We know that [tex]\(81 = 3^4\)[/tex].
- Taking the fourth root of [tex]\(81\)[/tex]:
[tex]\[ \sqrt[4]{81} = \sqrt[4]{3^4} = 3 \][/tex]
3. Deal with the variable term ([tex]\(y^{12}\)[/tex]):
- We can use the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
- So, [tex]\(\sqrt[4]{y^{12}}\)[/tex] is equivalent to:
[tex]\[ y^{12/4} = y^3 \][/tex]
4. Combine the results:
- Multiply the results from the constant term and the variable term:
[tex]\[ \sqrt[4]{81 y^{12}} = \sqrt[4]{81} \cdot \sqrt[4]{y^{12}} = 3 \cdot y^3 = 3y^3 \][/tex]
Thus, the final simplified result is:
[tex]\[ 3 y^3 \][/tex]
Hence, the correct answer is:
C. [tex]\(3 y^3\)[/tex]
1. Understand the components of the expression:
- [tex]\(81 y^{12}\)[/tex] is the expression inside the fourth root.
- First, we will separate the constants and the variable parts: [tex]\(81\)[/tex] and [tex]\(y^{12}\)[/tex].
2. Deal with the constant term (81):
- We know that [tex]\(81 = 3^4\)[/tex].
- Taking the fourth root of [tex]\(81\)[/tex]:
[tex]\[ \sqrt[4]{81} = \sqrt[4]{3^4} = 3 \][/tex]
3. Deal with the variable term ([tex]\(y^{12}\)[/tex]):
- We can use the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
- So, [tex]\(\sqrt[4]{y^{12}}\)[/tex] is equivalent to:
[tex]\[ y^{12/4} = y^3 \][/tex]
4. Combine the results:
- Multiply the results from the constant term and the variable term:
[tex]\[ \sqrt[4]{81 y^{12}} = \sqrt[4]{81} \cdot \sqrt[4]{y^{12}} = 3 \cdot y^3 = 3y^3 \][/tex]
Thus, the final simplified result is:
[tex]\[ 3 y^3 \][/tex]
Hence, the correct answer is:
C. [tex]\(3 y^3\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.