Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which equations represent circles with the smallest and largest radii, we first need to rewrite each equation in the standard form of a circle's equation: [tex]\((x-h)^2 + (y-k)^2 = r^2\)[/tex]. This is accomplished by completing the square.
Let's complete the square for each equation:
### Equation 1:
[tex]\[ 2x^2 + 2y^2 + 16x - 4y + 30 = 0 \][/tex]
1. Divide by 2 to simplify:
[tex]\[ x^2 + y^2 + 8x - 2y + 15 = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 8x - 2y = -15 \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 8x + 16 + y^2 - 2y + 1 = -15 + 16 + 1 \][/tex]
4. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 4)^2 + (y - 1)^2 = 2 \][/tex]
Here, the radius [tex]\(r_1 = \sqrt{2}\)[/tex].
### Equation 2:
[tex]\[ x^2 + y^2 + 6x - 4y - 20 = 0 \][/tex]
1. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 6x - 4y = 20 \][/tex]
2. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 6x + 9 + y^2 - 4y + 4 = 20 + 9 + 4 \][/tex]
3. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 3)^2 + (y - 2)^2 = 33 \][/tex]
Here, the radius [tex]\(r_2 = \sqrt{33}\)[/tex].
### Equation 3:
[tex]\[ 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \][/tex]
1. Divide by 4 to simplify:
[tex]\[ x^2 + y^2 - 4x - 6y + \frac{51}{4} = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 - 4x - 6y = -\frac{51}{4} \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 - 4x + 4 + y^2 - 6y + 9 = -\frac{51}{4} + 4 + 9 \][/tex]
4. Calculate the right side:
[tex]\[ -\frac{51}{4} + 4 + 9 = -\frac{51}{4} + \frac{16}{4} + \frac{36}{4} = -\frac{51 - 16 - 36}{4} = \frac{1}{4} \][/tex]
5. Factor the perfect squares:
[tex]\[ (x - 2)^2 + (y - 3)^2 = \frac{1}{4} \][/tex]
Here, the radius [tex]\(r_3 = \sqrt{\frac{1}{4}} = \frac{1}{2}\)[/tex].
### Summary:
1. Radius for Equation 1: [tex]\( r_1 = \sqrt{2} \)[/tex]
2. Radius for Equation 2: [tex]\( r_2 = \sqrt{33} \)[/tex]
3. Radius for Equation 3: [tex]\( r_3 = \frac{1}{2} \)[/tex]
Smallest radius: [tex]\( \frac{1}{2} \)[/tex] (Equation 3: [tex]\( 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \)[/tex])
Largest radius: [tex]\( \sqrt{33} \)[/tex] (Equation 2: [tex]\( x^2 + y^2 + 6x - 4y - 20 = 0 \)[/tex])
The table should be completed as follows:
| Radius | Equation |
|---------------|------------------------------------------------|
| Smallest | [tex]\( 4 x^2 + 4 y^2 - 16 x - 24 y + 51 = 0 \)[/tex] |
| Largest | [tex]\( x^2 + y^2 + 6 x - 4 y - 20 = 0 \)[/tex] |
Let's complete the square for each equation:
### Equation 1:
[tex]\[ 2x^2 + 2y^2 + 16x - 4y + 30 = 0 \][/tex]
1. Divide by 2 to simplify:
[tex]\[ x^2 + y^2 + 8x - 2y + 15 = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 8x - 2y = -15 \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 8x + 16 + y^2 - 2y + 1 = -15 + 16 + 1 \][/tex]
4. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 4)^2 + (y - 1)^2 = 2 \][/tex]
Here, the radius [tex]\(r_1 = \sqrt{2}\)[/tex].
### Equation 2:
[tex]\[ x^2 + y^2 + 6x - 4y - 20 = 0 \][/tex]
1. Move the constant term to the right side:
[tex]\[ x^2 + y^2 + 6x - 4y = 20 \][/tex]
2. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 + 6x + 9 + y^2 - 4y + 4 = 20 + 9 + 4 \][/tex]
3. Factor the perfect squares and solve for the right side:
[tex]\[ (x + 3)^2 + (y - 2)^2 = 33 \][/tex]
Here, the radius [tex]\(r_2 = \sqrt{33}\)[/tex].
### Equation 3:
[tex]\[ 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \][/tex]
1. Divide by 4 to simplify:
[tex]\[ x^2 + y^2 - 4x - 6y + \frac{51}{4} = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 + y^2 - 4x - 6y = -\frac{51}{4} \][/tex]
3. Complete the square for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x^2 - 4x + 4 + y^2 - 6y + 9 = -\frac{51}{4} + 4 + 9 \][/tex]
4. Calculate the right side:
[tex]\[ -\frac{51}{4} + 4 + 9 = -\frac{51}{4} + \frac{16}{4} + \frac{36}{4} = -\frac{51 - 16 - 36}{4} = \frac{1}{4} \][/tex]
5. Factor the perfect squares:
[tex]\[ (x - 2)^2 + (y - 3)^2 = \frac{1}{4} \][/tex]
Here, the radius [tex]\(r_3 = \sqrt{\frac{1}{4}} = \frac{1}{2}\)[/tex].
### Summary:
1. Radius for Equation 1: [tex]\( r_1 = \sqrt{2} \)[/tex]
2. Radius for Equation 2: [tex]\( r_2 = \sqrt{33} \)[/tex]
3. Radius for Equation 3: [tex]\( r_3 = \frac{1}{2} \)[/tex]
Smallest radius: [tex]\( \frac{1}{2} \)[/tex] (Equation 3: [tex]\( 4x^2 + 4y^2 - 16x - 24y + 51 = 0 \)[/tex])
Largest radius: [tex]\( \sqrt{33} \)[/tex] (Equation 2: [tex]\( x^2 + y^2 + 6x - 4y - 20 = 0 \)[/tex])
The table should be completed as follows:
| Radius | Equation |
|---------------|------------------------------------------------|
| Smallest | [tex]\( 4 x^2 + 4 y^2 - 16 x - 24 y + 51 = 0 \)[/tex] |
| Largest | [tex]\( x^2 + y^2 + 6 x - 4 y - 20 = 0 \)[/tex] |
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.