Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the given problem step by step.
The balanced chemical equation for the combustion of carbon disulfide ([tex]\(CS_2\)[/tex]) in oxygen ([tex]\(O_2\)[/tex]) is as follows:
[tex]\[ CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g) \][/tex]
We need to calculate the volumes of [tex]\(O_2\)[/tex], [tex]\(CO_2\)[/tex], and [tex]\(SO_2\)[/tex] involved in the reaction when [tex]\(3 \, \text{dm}^3\)[/tex] of [tex]\(CS_2\)[/tex] reacts completely.
### Part 6.1: Volume of [tex]\(O_2\)[/tex] used
From the balanced equation, we see that 1 volume of [tex]\(CS_2\)[/tex] reacts with 3 volumes of [tex]\(O_2\)[/tex]. Therefore, the volume of [tex]\(O_2\)[/tex] used will be three times the volume of [tex]\(CS_2\)[/tex].
Given:
- Volume of [tex]\(CS_2 = 3 \, \text{dm}^3\)[/tex]
Using the stoichiometric ratio from the balanced equation:
- Volume of [tex]\(O_2\)[/tex] used = Volume of [tex]\(CS_2\)[/tex] [tex]\(\times 3\)[/tex]
- Volume of [tex]\(O_2\)[/tex] used = [tex]\(3 \, \text{dm}^3 \times 3 = 9 \, \text{dm}^3\)[/tex]
### Part 6.2: Volume of [tex]\(CO_2\)[/tex] and [tex]\(SO_2\)[/tex] made
From the balanced equation, we also see that:
- 1 volume of [tex]\(CS_2\)[/tex] produces 1 volume of [tex]\(CO_2\)[/tex].
- 1 volume of [tex]\(CS_2\)[/tex] produces 2 volumes of [tex]\(SO_2\)[/tex].
Therefore,
- Volume of [tex]\(CO_2\)[/tex] produced = Volume of [tex]\(CS_2 \, (\text{dm}^3}) = 3 \, \text{dm}^3 - Volume of \(SO_2\)[/tex] produced = Volume of [tex]\(CS_2\)[/tex] [tex]\(\times 2\)[/tex] = [tex]\(3 \, \text{dm}^3 \times 2 = 6 \, \text{dm}^3\)[/tex]
### Summary
When [tex]\(3 \, \text{dm}^3\)[/tex] of [tex]\(CS_2\)[/tex] reacts completely:
- Volume of [tex]\(O_2\)[/tex] used is [tex]\(9 \, \text{dm}^3\)[/tex].
- Volume of [tex]\(CO_2\)[/tex] produced is [tex]\(3 \, \text{dm}^3\)[/tex].
- Volume of [tex]\(SO_2\)[/tex] produced is [tex]\(6 \, \text{dm}^3\)[/tex].
Thus, the answers are:
1. Volume of [tex]\(O_2\)[/tex] used: [tex]\(9 \, \text{dm}^3\)[/tex]
2. Volume of [tex]\(CO_2\)[/tex] produced: [tex]\(3 \, \text{dm}^3\)[/tex]
3. Volume of [tex]\(SO_2\)[/tex] produced: [tex]\(6 \, \text{dm}^3\)[/tex]
The balanced chemical equation for the combustion of carbon disulfide ([tex]\(CS_2\)[/tex]) in oxygen ([tex]\(O_2\)[/tex]) is as follows:
[tex]\[ CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g) \][/tex]
We need to calculate the volumes of [tex]\(O_2\)[/tex], [tex]\(CO_2\)[/tex], and [tex]\(SO_2\)[/tex] involved in the reaction when [tex]\(3 \, \text{dm}^3\)[/tex] of [tex]\(CS_2\)[/tex] reacts completely.
### Part 6.1: Volume of [tex]\(O_2\)[/tex] used
From the balanced equation, we see that 1 volume of [tex]\(CS_2\)[/tex] reacts with 3 volumes of [tex]\(O_2\)[/tex]. Therefore, the volume of [tex]\(O_2\)[/tex] used will be three times the volume of [tex]\(CS_2\)[/tex].
Given:
- Volume of [tex]\(CS_2 = 3 \, \text{dm}^3\)[/tex]
Using the stoichiometric ratio from the balanced equation:
- Volume of [tex]\(O_2\)[/tex] used = Volume of [tex]\(CS_2\)[/tex] [tex]\(\times 3\)[/tex]
- Volume of [tex]\(O_2\)[/tex] used = [tex]\(3 \, \text{dm}^3 \times 3 = 9 \, \text{dm}^3\)[/tex]
### Part 6.2: Volume of [tex]\(CO_2\)[/tex] and [tex]\(SO_2\)[/tex] made
From the balanced equation, we also see that:
- 1 volume of [tex]\(CS_2\)[/tex] produces 1 volume of [tex]\(CO_2\)[/tex].
- 1 volume of [tex]\(CS_2\)[/tex] produces 2 volumes of [tex]\(SO_2\)[/tex].
Therefore,
- Volume of [tex]\(CO_2\)[/tex] produced = Volume of [tex]\(CS_2 \, (\text{dm}^3}) = 3 \, \text{dm}^3 - Volume of \(SO_2\)[/tex] produced = Volume of [tex]\(CS_2\)[/tex] [tex]\(\times 2\)[/tex] = [tex]\(3 \, \text{dm}^3 \times 2 = 6 \, \text{dm}^3\)[/tex]
### Summary
When [tex]\(3 \, \text{dm}^3\)[/tex] of [tex]\(CS_2\)[/tex] reacts completely:
- Volume of [tex]\(O_2\)[/tex] used is [tex]\(9 \, \text{dm}^3\)[/tex].
- Volume of [tex]\(CO_2\)[/tex] produced is [tex]\(3 \, \text{dm}^3\)[/tex].
- Volume of [tex]\(SO_2\)[/tex] produced is [tex]\(6 \, \text{dm}^3\)[/tex].
Thus, the answers are:
1. Volume of [tex]\(O_2\)[/tex] used: [tex]\(9 \, \text{dm}^3\)[/tex]
2. Volume of [tex]\(CO_2\)[/tex] produced: [tex]\(3 \, \text{dm}^3\)[/tex]
3. Volume of [tex]\(SO_2\)[/tex] produced: [tex]\(6 \, \text{dm}^3\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.