Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the length of the hypotenuse in the right triangle given the shortest side and one of the angles, follow these steps:
1. Identify the type of right triangle:
The triangle described has a shortest side and a [tex]$60^{\circ}$[/tex] angle. This is a 30-60-90 right triangle, where the angles are [tex]$30^{\circ}$[/tex], [tex]$60^{\circ}$[/tex], and [tex]$90^{\circ}$[/tex].
2. Understand the side ratios of a 30-60-90 right triangle:
In this type of triangle, the sides are in a specific ratio:
- The side opposite the [tex]$30^{\circ}$[/tex] angle (shortest side) is [tex]\( x \)[/tex].
- The side opposite the [tex]$60^{\circ}$[/tex] angle (longer leg) is [tex]\( x\sqrt{3} \)[/tex].
- The hypotenuse is [tex]\( 2x \)[/tex].
3. Given:
The shortest side is [tex]\( 3 \sqrt{3} \)[/tex] inches. This side is opposite the [tex]$30^{\circ}$[/tex] angle.
4. Set up the ratio and solve for the hypotenuse:
- The shortest side (opposite the [tex]$30^{\circ}$[/tex] angle) is [tex]\( x \)[/tex], so [tex]\( x = 3 \sqrt{3} \)[/tex].
- The hypotenuse is [tex]\( 2x \)[/tex].
5. Calculate the hypotenuse:
[tex]\[ \text{Hypotenuse} = 2x = 2 \cdot (3\sqrt{3}) = 6\sqrt{3} \][/tex]
So, we have calculated that the length of the hypotenuse is equal to [tex]\( 6 \sqrt{3} \)[/tex] inches.
6. Check the options:
A. [tex]\( 6 \sqrt{2} \)[/tex]
B. 6
C. 3
D. [tex]\( 6 \sqrt{3} \)[/tex]
The correct answer is:
[tex]\[ \boxed{6} \][/tex]
1. Identify the type of right triangle:
The triangle described has a shortest side and a [tex]$60^{\circ}$[/tex] angle. This is a 30-60-90 right triangle, where the angles are [tex]$30^{\circ}$[/tex], [tex]$60^{\circ}$[/tex], and [tex]$90^{\circ}$[/tex].
2. Understand the side ratios of a 30-60-90 right triangle:
In this type of triangle, the sides are in a specific ratio:
- The side opposite the [tex]$30^{\circ}$[/tex] angle (shortest side) is [tex]\( x \)[/tex].
- The side opposite the [tex]$60^{\circ}$[/tex] angle (longer leg) is [tex]\( x\sqrt{3} \)[/tex].
- The hypotenuse is [tex]\( 2x \)[/tex].
3. Given:
The shortest side is [tex]\( 3 \sqrt{3} \)[/tex] inches. This side is opposite the [tex]$30^{\circ}$[/tex] angle.
4. Set up the ratio and solve for the hypotenuse:
- The shortest side (opposite the [tex]$30^{\circ}$[/tex] angle) is [tex]\( x \)[/tex], so [tex]\( x = 3 \sqrt{3} \)[/tex].
- The hypotenuse is [tex]\( 2x \)[/tex].
5. Calculate the hypotenuse:
[tex]\[ \text{Hypotenuse} = 2x = 2 \cdot (3\sqrt{3}) = 6\sqrt{3} \][/tex]
So, we have calculated that the length of the hypotenuse is equal to [tex]\( 6 \sqrt{3} \)[/tex] inches.
6. Check the options:
A. [tex]\( 6 \sqrt{2} \)[/tex]
B. 6
C. 3
D. [tex]\( 6 \sqrt{3} \)[/tex]
The correct answer is:
[tex]\[ \boxed{6} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.