Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find a polynomial [tex]\( P(x) \)[/tex] of degree 10 with a leading coefficient of 1, and given roots with certain multiplicities, we must construct the polynomial based on these properties.
Here are the steps to form the polynomial:
1. Identify the Roots and Their Multiplicities:
- The root 0 has a multiplicity of 4.
- The root 1 has a multiplicity of 3.
- The root 3 has a multiplicity of 3.
2. Construct the Polynomial using the Roots and Multiplicities:
- For a root [tex]\( x = 0 \)[/tex] with a multiplicity of 4, the factor is [tex]\((x - 0)^4\)[/tex].
- For a root [tex]\( x = 1 \)[/tex] with a multiplicity of 3, the factor is [tex]\((x - 1)^3\)[/tex].
- For a root [tex]\( x = 3 \)[/tex] with a multiplicity of 3, the factor is [tex]\((x - 3)^3\)[/tex].
3. Combine the Factors:
- Multiply these factors together to construct the polynomial. Since the leading coefficient is 1, the polynomial can be written directly as the product of these factors.
Therefore, the polynomial [tex]\( P(x) \)[/tex] can be written as:
[tex]\[ P(x) = (x - 0)^4 \times (x - 1)^3 \times (x - 3)^3 \][/tex]
So, a possible formula for [tex]\( P(x) \)[/tex] is:
[tex]\[ P(x) = (x - 0)^4 (x - 1)^3 (x - 3)^3 \][/tex]
Here are the steps to form the polynomial:
1. Identify the Roots and Their Multiplicities:
- The root 0 has a multiplicity of 4.
- The root 1 has a multiplicity of 3.
- The root 3 has a multiplicity of 3.
2. Construct the Polynomial using the Roots and Multiplicities:
- For a root [tex]\( x = 0 \)[/tex] with a multiplicity of 4, the factor is [tex]\((x - 0)^4\)[/tex].
- For a root [tex]\( x = 1 \)[/tex] with a multiplicity of 3, the factor is [tex]\((x - 1)^3\)[/tex].
- For a root [tex]\( x = 3 \)[/tex] with a multiplicity of 3, the factor is [tex]\((x - 3)^3\)[/tex].
3. Combine the Factors:
- Multiply these factors together to construct the polynomial. Since the leading coefficient is 1, the polynomial can be written directly as the product of these factors.
Therefore, the polynomial [tex]\( P(x) \)[/tex] can be written as:
[tex]\[ P(x) = (x - 0)^4 \times (x - 1)^3 \times (x - 3)^3 \][/tex]
So, a possible formula for [tex]\( P(x) \)[/tex] is:
[tex]\[ P(x) = (x - 0)^4 (x - 1)^3 (x - 3)^3 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.