Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's analyze the function [tex]\( P(x) = x^3 + x^2 - 42x \)[/tex].
1. Finding the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex].
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ P(0) = 0^3 + 0^2 - 42 \cdot 0 = 0 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( 0 \)[/tex].
2. Finding the [tex]\( x \)[/tex]-intercepts:
The [tex]\( x \)[/tex]-intercepts are the values of [tex]\( x \)[/tex] where the function [tex]\( P(x) = 0 \)[/tex].
We solve the equation:
[tex]\[ x^3 + x^2 - 42x = 0 \][/tex]
Factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x(x^2 + x - 42) = 0 \][/tex]
This gives us one [tex]\( x \)[/tex]-intercept at [tex]\( x = 0 \)[/tex].
Now, we solve the quadratic equation [tex]\( x^2 + x - 42 \)[/tex]:
[tex]\[ x^2 + x - 42 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] with [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -42 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-42)}}{2(1)} = \frac{-1 \pm \sqrt{1 + 168}}{2} = \frac{-1 \pm \sqrt{169}}{2} = \frac{-1 \pm 13}{2} \][/tex]
Therefore, we get:
[tex]\[ x = \frac{-1 + 13}{2} = 6 \quad \text{and} \quad x = \frac{-1 - 13}{2} = -7 \][/tex]
So, the [tex]\( x \)[/tex]-intercepts are [tex]\( -7 \)[/tex], [tex]\( 0 \)[/tex], and [tex]\( 6 \)[/tex].
3. Analyzing the end behavior as [tex]\( x \rightarrow \infty \)[/tex]:
As [tex]\( x \)[/tex] approaches infinity, the term [tex]\( x^3 \)[/tex] will dominate because it has the highest power.
Therefore:
[tex]\[ \lim_ {x \to \infty} (x^3 + x^2 - 42x) = \infty \][/tex]
4. Analyzing the end behavior as [tex]\( x \rightarrow -\infty \)[/tex]:
Similarly, as [tex]\( x \)[/tex] approaches negative infinity, the term [tex]\( x^3 \)[/tex] will still dominate.
Therefore:
[tex]\[ \lim_ {x \to -\infty} (x^3 + x^2 - 42x) = -\infty \][/tex]
Summarizing all the findings:
- The [tex]\( y \)[/tex]-intercept is [tex]\( \boxed{0} \)[/tex].
- The [tex]\( x \)[/tex]-intercepts are [tex]\( \boxed{-7, 0, 6} \)[/tex].
- When [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \boxed{\infty} \)[/tex].
- When [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow \boxed{-\infty} \)[/tex].
1. Finding the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex].
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ P(0) = 0^3 + 0^2 - 42 \cdot 0 = 0 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( 0 \)[/tex].
2. Finding the [tex]\( x \)[/tex]-intercepts:
The [tex]\( x \)[/tex]-intercepts are the values of [tex]\( x \)[/tex] where the function [tex]\( P(x) = 0 \)[/tex].
We solve the equation:
[tex]\[ x^3 + x^2 - 42x = 0 \][/tex]
Factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x(x^2 + x - 42) = 0 \][/tex]
This gives us one [tex]\( x \)[/tex]-intercept at [tex]\( x = 0 \)[/tex].
Now, we solve the quadratic equation [tex]\( x^2 + x - 42 \)[/tex]:
[tex]\[ x^2 + x - 42 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] with [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -42 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-42)}}{2(1)} = \frac{-1 \pm \sqrt{1 + 168}}{2} = \frac{-1 \pm \sqrt{169}}{2} = \frac{-1 \pm 13}{2} \][/tex]
Therefore, we get:
[tex]\[ x = \frac{-1 + 13}{2} = 6 \quad \text{and} \quad x = \frac{-1 - 13}{2} = -7 \][/tex]
So, the [tex]\( x \)[/tex]-intercepts are [tex]\( -7 \)[/tex], [tex]\( 0 \)[/tex], and [tex]\( 6 \)[/tex].
3. Analyzing the end behavior as [tex]\( x \rightarrow \infty \)[/tex]:
As [tex]\( x \)[/tex] approaches infinity, the term [tex]\( x^3 \)[/tex] will dominate because it has the highest power.
Therefore:
[tex]\[ \lim_ {x \to \infty} (x^3 + x^2 - 42x) = \infty \][/tex]
4. Analyzing the end behavior as [tex]\( x \rightarrow -\infty \)[/tex]:
Similarly, as [tex]\( x \)[/tex] approaches negative infinity, the term [tex]\( x^3 \)[/tex] will still dominate.
Therefore:
[tex]\[ \lim_ {x \to -\infty} (x^3 + x^2 - 42x) = -\infty \][/tex]
Summarizing all the findings:
- The [tex]\( y \)[/tex]-intercept is [tex]\( \boxed{0} \)[/tex].
- The [tex]\( x \)[/tex]-intercepts are [tex]\( \boxed{-7, 0, 6} \)[/tex].
- When [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \boxed{\infty} \)[/tex].
- When [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow \boxed{-\infty} \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.