Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To write the function [tex]\( f(x) = 2x^2 - 44x + 185 \)[/tex] in vertex form, we need to complete the square. Here are the step-by-step instructions:
1. Factor out the 2 from the first two terms:
We start with the standard form and factor out the coefficient of [tex]\( x^2 \)[/tex] from the quadratic and linear terms:
[tex]\[ f(x) = 2(x^2 - 22x) + 185. \][/tex]
2. Form a perfect square trinomial inside the parentheses:
To complete the square, we need to add and subtract a specific value inside the brackets that will make the expression a perfect square trinomial. We take half of the coefficient of [tex]\( x \)[/tex] (which is [tex]\(-22\)[/tex]), divide by 2, and then square it:
[tex]\[ \left(\frac{-22}{2}\right)^2 = (-11)^2 = 121. \][/tex]
Then we add and subtract this square inside the parentheses:
[tex]\[ f(x) = 2(x^2 - 22x + 121 - 121) + 185. \][/tex]
3. Rewrite the trinomial:
Now, we rewrite the trinomial as a square:
[tex]\[ f(x) = 2((x - 11)^2 - 121) + 185. \][/tex]
4. Distribute the 2:
Next, we distribute the 2 to both terms inside the parentheses:
[tex]\[ f(x) = 2(x - 11)^2 - 2 \cdot 121 + 185, \][/tex]
which simplifies to:
[tex]\[ f(x) = 2(x - 11)^2 - 242 + 185. \][/tex]
5. Combine the constants:
Finally, we combine the constant terms:
[tex]\[ f(x) = 2(x - 11)^2 - 57. \][/tex]
Thus, the function written in vertex form is:
[tex]\[ f(x) = 2(x - 11)^2 - 57. \][/tex]
So the values for the completed vertex form are as follows: [tex]\(a = 2\)[/tex], [tex]\(h = 11\)[/tex], and [tex]\(k = -57\)[/tex].
1. Factor out the 2 from the first two terms:
We start with the standard form and factor out the coefficient of [tex]\( x^2 \)[/tex] from the quadratic and linear terms:
[tex]\[ f(x) = 2(x^2 - 22x) + 185. \][/tex]
2. Form a perfect square trinomial inside the parentheses:
To complete the square, we need to add and subtract a specific value inside the brackets that will make the expression a perfect square trinomial. We take half of the coefficient of [tex]\( x \)[/tex] (which is [tex]\(-22\)[/tex]), divide by 2, and then square it:
[tex]\[ \left(\frac{-22}{2}\right)^2 = (-11)^2 = 121. \][/tex]
Then we add and subtract this square inside the parentheses:
[tex]\[ f(x) = 2(x^2 - 22x + 121 - 121) + 185. \][/tex]
3. Rewrite the trinomial:
Now, we rewrite the trinomial as a square:
[tex]\[ f(x) = 2((x - 11)^2 - 121) + 185. \][/tex]
4. Distribute the 2:
Next, we distribute the 2 to both terms inside the parentheses:
[tex]\[ f(x) = 2(x - 11)^2 - 2 \cdot 121 + 185, \][/tex]
which simplifies to:
[tex]\[ f(x) = 2(x - 11)^2 - 242 + 185. \][/tex]
5. Combine the constants:
Finally, we combine the constant terms:
[tex]\[ f(x) = 2(x - 11)^2 - 57. \][/tex]
Thus, the function written in vertex form is:
[tex]\[ f(x) = 2(x - 11)^2 - 57. \][/tex]
So the values for the completed vertex form are as follows: [tex]\(a = 2\)[/tex], [tex]\(h = 11\)[/tex], and [tex]\(k = -57\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.