Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To test the hypothesis [tex]\( H_0: (p_1 - p_2) = 0 \)[/tex] against the alternative hypothesis [tex]\( H_a: (p_1 - p_2) > 0 \)[/tex] at a significance level of [tex]\( \alpha = 0.02 \)[/tex], let's break down the solution step by step:
### Step-by-Step Solution
1. Sample Sizes & Successes:
- Sample size for population 1, [tex]\( n_1 = 70 \)[/tex]
- Sample size for population 2, [tex]\( n_2 = 70 \)[/tex]
- Number of successes in sample 1, [tex]\( x_1 = 53 \)[/tex]
- Number of successes in sample 2, [tex]\( x_2 = 43 \)[/tex]
2. Sample Proportions:
- Proportion of successes in sample 1, [tex]\( \hat{p}_1 = \frac{x_1}{n_1} = \frac{53}{70} \approx 0.7571 \)[/tex]
- Proportion of successes in sample 2, [tex]\( \hat{p}_2 = \frac{x_2}{n_2} \approx \frac{43}{70} \approx 0.6143 \)[/tex]
3. Pooled Proportion:
- The pooled sample proportion is calculated as:
[tex]\[ \hat{p}_{\text{pool}} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{53 + 43}{70 + 70} = \frac{96}{140} \approx 0.6857 \][/tex]
4. Standard Error:
- The standard error of the difference in proportions is calculated using the pooled proportion:
[tex]\[ SE = \sqrt{\hat{p}_{\text{pool}} \cdot (1 - \hat{p}_{\text{pool}}) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \][/tex]
[tex]\[ SE \approx \sqrt{0.6857 \cdot (1 - 0.6857) \left(\frac{1}{70} + \frac{1}{70}\right)} \approx 0.0785 \][/tex]
5. Test Statistic:
- The test statistic (Z) for the difference in proportions is:
[tex]\[ Z = \frac{\hat{p}_1 - \hat{p}_2}{SE} = \frac{0.7571 - 0.6143}{0.0785} \approx 1.8205 \][/tex]
6. P-Value:
- Since the alternative hypothesis is testing if [tex]\( p_1 \)[/tex] is greater than [tex]\( p_2 \)[/tex], the P-value is determined from the Z-table (standard normal distribution) as:
[tex]\[ P\text{-value} = 1 - \Phi(Z) \approx 1 - \Phi(1.8205) \approx 0.0343 \][/tex]
### Conclusion
(a) The test statistic is [tex]\( \boxed{1.8205} \)[/tex].
(b) The P-value is [tex]\( \boxed{0.0343} \)[/tex].
With an alpha level [tex]\( \alpha = 0.02 \)[/tex], the P-value [tex]\( 0.0343 \)[/tex] is greater than [tex]\( 0.02 \)[/tex], so we fail to reject the null hypothesis [tex]\( H_0 \)[/tex]. This means there is not enough evidence to conclude that the proportion of successes in population 1 is greater than the proportion of successes in population 2 at the 0.02 significance level.
### Step-by-Step Solution
1. Sample Sizes & Successes:
- Sample size for population 1, [tex]\( n_1 = 70 \)[/tex]
- Sample size for population 2, [tex]\( n_2 = 70 \)[/tex]
- Number of successes in sample 1, [tex]\( x_1 = 53 \)[/tex]
- Number of successes in sample 2, [tex]\( x_2 = 43 \)[/tex]
2. Sample Proportions:
- Proportion of successes in sample 1, [tex]\( \hat{p}_1 = \frac{x_1}{n_1} = \frac{53}{70} \approx 0.7571 \)[/tex]
- Proportion of successes in sample 2, [tex]\( \hat{p}_2 = \frac{x_2}{n_2} \approx \frac{43}{70} \approx 0.6143 \)[/tex]
3. Pooled Proportion:
- The pooled sample proportion is calculated as:
[tex]\[ \hat{p}_{\text{pool}} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{53 + 43}{70 + 70} = \frac{96}{140} \approx 0.6857 \][/tex]
4. Standard Error:
- The standard error of the difference in proportions is calculated using the pooled proportion:
[tex]\[ SE = \sqrt{\hat{p}_{\text{pool}} \cdot (1 - \hat{p}_{\text{pool}}) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \][/tex]
[tex]\[ SE \approx \sqrt{0.6857 \cdot (1 - 0.6857) \left(\frac{1}{70} + \frac{1}{70}\right)} \approx 0.0785 \][/tex]
5. Test Statistic:
- The test statistic (Z) for the difference in proportions is:
[tex]\[ Z = \frac{\hat{p}_1 - \hat{p}_2}{SE} = \frac{0.7571 - 0.6143}{0.0785} \approx 1.8205 \][/tex]
6. P-Value:
- Since the alternative hypothesis is testing if [tex]\( p_1 \)[/tex] is greater than [tex]\( p_2 \)[/tex], the P-value is determined from the Z-table (standard normal distribution) as:
[tex]\[ P\text{-value} = 1 - \Phi(Z) \approx 1 - \Phi(1.8205) \approx 0.0343 \][/tex]
### Conclusion
(a) The test statistic is [tex]\( \boxed{1.8205} \)[/tex].
(b) The P-value is [tex]\( \boxed{0.0343} \)[/tex].
With an alpha level [tex]\( \alpha = 0.02 \)[/tex], the P-value [tex]\( 0.0343 \)[/tex] is greater than [tex]\( 0.02 \)[/tex], so we fail to reject the null hypothesis [tex]\( H_0 \)[/tex]. This means there is not enough evidence to conclude that the proportion of successes in population 1 is greater than the proportion of successes in population 2 at the 0.02 significance level.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.