Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve these problems related to the motion of a woman attached to a bungee cord, let's start by finding her velocity as a function of time and then address each part of the question step-by-step.
### Given Function:
The height of the woman above the river as a function of time [tex]\( t \)[/tex] is given by:
[tex]\[ y(t) = 21 \left( 1 + e^{-t} \cos t \right) \][/tex]
### Part (a): Determining Her Velocity at [tex]\( t = 1 \)[/tex] and [tex]\( t = 3 \)[/tex]
Velocity is the rate of change of height with respect to time, which is the first derivative of [tex]\( y(t) \)[/tex].
First, we need to take the derivative of [tex]\( y(t) \)[/tex]:
[tex]\[ y(t) = 21 \left( 1 + e^{-t} \cos t \right) \][/tex]
### Derivative Calculation:
Using the product rule and the chain rule for differentiation:
[tex]\[ y(t) = 21[1 + e^{-t} \cos t] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ \frac{d}{dt} (1) + \frac{d}{dt} \left( e^{-t} \cos t \right) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ 0 + e^{-t} \frac{d}{dt} (\cos t) + \cos t \frac{d}{dt} (e^{-t}) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ e^{-t} (-\sin t) + \cos t (-e^{-t}) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ -e^{-t} \sin t - e^{-t} \cos t \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ -e^{-t} (\sin t + \cos t) \right] \][/tex]
[tex]\[ v(t) = -21 e^{-t} (\sin t + \cos t) \][/tex]
Now, let's evaluate this velocity function [tex]\( v(t) \)[/tex] at [tex]\( t = 1 \)[/tex] and [tex]\( t = 3 \)[/tex]:
1. Velocity at [tex]\( t = 1 \)[/tex]:
[tex]\[ v(1) = -21 e^{-1} (\sin 1 + \cos 1) \][/tex]
Using a calculator:
[tex]\[ \sin 1 \approx 0.8415 \][/tex]
[tex]\[ \cos 1 \approx 0.5403 \][/tex]
[tex]\[ e^{-1} \approx 0.3679 \][/tex]
[tex]\[ v(1) = -21 (0.3679) (0.8415 + 0.5403) \][/tex]
[tex]\[ v(1) = -21 (0.3679) (1.3818) \][/tex]
[tex]\[ v(1) \approx -21 \times 0.5085 \][/tex]
[tex]\[ v(1) \approx -10.679 \, \text{m/s} \][/tex]
2. Velocity at [tex]\( t = 3 \)[/tex]:
[tex]\[ v(3) = -21 e^{-3} (\sin 3 + \cos 3) \][/tex]
Using a calculator:
[tex]\[ \sin 3 \approx 0.1411 \][/tex]
[tex]\[ \cos 3 \approx -0.9895 \][/tex]
[tex]\[ e^{-3} \approx 0.0498 \][/tex]
[tex]\[ v(3) = -21 (0.0498) (0.1411 - 0.9895) \][/tex]
[tex]\[ v(3) = -21 (0.0498) (-0.8484) \][/tex]
[tex]\[ v(3) \approx -21 \times -0.0422 \][/tex]
[tex]\[ v(3) \approx 0.8862 \, \text{m/s} \][/tex]
### Summary of Part (a):
- Her velocity at [tex]\( t = 1 \)[/tex] is approximately [tex]\( -10.679 \, \text{m/s} \)[/tex].
- Her velocity at [tex]\( t = 3 \)[/tex] is approximately [tex]\( 0.8862 \, \text{m/s} \)[/tex].
### Part (b): Determine When She is Moving Downward and Upward
To determine when she is moving downward and when she is moving upward, we need to analyze the sign of [tex]\( v(t) \)[/tex].
- Moving Downward: [tex]\( v(t) < 0 \)[/tex]
- Moving Upward: [tex]\( v(t) > 0 \)[/tex]
We can determine this through a graphing utility. Essentially, you would plot [tex]\( v(t) = -21 e^{-t} (\sin t + \cos t) \)[/tex] over the interval [tex]\( 0 \le t \le 10 \)[/tex].
- She is moving downward when the graph of [tex]\( v(t) \)[/tex] is below the t-axis.
- She is moving upward when the graph of [tex]\( v(t) \)[/tex] is above the t-axis.
### Part (c): Estimate the Maximum Upward Velocity
The maximum upward velocity will occur at the point where [tex]\( v(t) \)[/tex] reaches its maximum positive value. This can be estimated using the graphing utility.
### Final Function for Part (a):
- Her velocity at time [tex]\( t \)[/tex] is given by the function [tex]\( v(t) = -21 e^{-t} (\sin t + \cos t) \)[/tex].
### Given Function:
The height of the woman above the river as a function of time [tex]\( t \)[/tex] is given by:
[tex]\[ y(t) = 21 \left( 1 + e^{-t} \cos t \right) \][/tex]
### Part (a): Determining Her Velocity at [tex]\( t = 1 \)[/tex] and [tex]\( t = 3 \)[/tex]
Velocity is the rate of change of height with respect to time, which is the first derivative of [tex]\( y(t) \)[/tex].
First, we need to take the derivative of [tex]\( y(t) \)[/tex]:
[tex]\[ y(t) = 21 \left( 1 + e^{-t} \cos t \right) \][/tex]
### Derivative Calculation:
Using the product rule and the chain rule for differentiation:
[tex]\[ y(t) = 21[1 + e^{-t} \cos t] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ \frac{d}{dt} (1) + \frac{d}{dt} \left( e^{-t} \cos t \right) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ 0 + e^{-t} \frac{d}{dt} (\cos t) + \cos t \frac{d}{dt} (e^{-t}) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ e^{-t} (-\sin t) + \cos t (-e^{-t}) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ -e^{-t} \sin t - e^{-t} \cos t \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ -e^{-t} (\sin t + \cos t) \right] \][/tex]
[tex]\[ v(t) = -21 e^{-t} (\sin t + \cos t) \][/tex]
Now, let's evaluate this velocity function [tex]\( v(t) \)[/tex] at [tex]\( t = 1 \)[/tex] and [tex]\( t = 3 \)[/tex]:
1. Velocity at [tex]\( t = 1 \)[/tex]:
[tex]\[ v(1) = -21 e^{-1} (\sin 1 + \cos 1) \][/tex]
Using a calculator:
[tex]\[ \sin 1 \approx 0.8415 \][/tex]
[tex]\[ \cos 1 \approx 0.5403 \][/tex]
[tex]\[ e^{-1} \approx 0.3679 \][/tex]
[tex]\[ v(1) = -21 (0.3679) (0.8415 + 0.5403) \][/tex]
[tex]\[ v(1) = -21 (0.3679) (1.3818) \][/tex]
[tex]\[ v(1) \approx -21 \times 0.5085 \][/tex]
[tex]\[ v(1) \approx -10.679 \, \text{m/s} \][/tex]
2. Velocity at [tex]\( t = 3 \)[/tex]:
[tex]\[ v(3) = -21 e^{-3} (\sin 3 + \cos 3) \][/tex]
Using a calculator:
[tex]\[ \sin 3 \approx 0.1411 \][/tex]
[tex]\[ \cos 3 \approx -0.9895 \][/tex]
[tex]\[ e^{-3} \approx 0.0498 \][/tex]
[tex]\[ v(3) = -21 (0.0498) (0.1411 - 0.9895) \][/tex]
[tex]\[ v(3) = -21 (0.0498) (-0.8484) \][/tex]
[tex]\[ v(3) \approx -21 \times -0.0422 \][/tex]
[tex]\[ v(3) \approx 0.8862 \, \text{m/s} \][/tex]
### Summary of Part (a):
- Her velocity at [tex]\( t = 1 \)[/tex] is approximately [tex]\( -10.679 \, \text{m/s} \)[/tex].
- Her velocity at [tex]\( t = 3 \)[/tex] is approximately [tex]\( 0.8862 \, \text{m/s} \)[/tex].
### Part (b): Determine When She is Moving Downward and Upward
To determine when she is moving downward and when she is moving upward, we need to analyze the sign of [tex]\( v(t) \)[/tex].
- Moving Downward: [tex]\( v(t) < 0 \)[/tex]
- Moving Upward: [tex]\( v(t) > 0 \)[/tex]
We can determine this through a graphing utility. Essentially, you would plot [tex]\( v(t) = -21 e^{-t} (\sin t + \cos t) \)[/tex] over the interval [tex]\( 0 \le t \le 10 \)[/tex].
- She is moving downward when the graph of [tex]\( v(t) \)[/tex] is below the t-axis.
- She is moving upward when the graph of [tex]\( v(t) \)[/tex] is above the t-axis.
### Part (c): Estimate the Maximum Upward Velocity
The maximum upward velocity will occur at the point where [tex]\( v(t) \)[/tex] reaches its maximum positive value. This can be estimated using the graphing utility.
### Final Function for Part (a):
- Her velocity at time [tex]\( t \)[/tex] is given by the function [tex]\( v(t) = -21 e^{-t} (\sin t + \cos t) \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.