Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve each of these questions step-by-step.
### 6. Factorize: [tex]\(2(x-y)^2-9(x-y)+10\)[/tex]
To factorize the given quadratic expression, we will employ substitution to simplify it.
1. Substitution:
Let [tex]\(u = (x - y)\)[/tex]. Then the expression [tex]\(2(x-y)^2 - 9(x-y) + 10\)[/tex] transforms to:
[tex]\[ 2u^2 - 9u + 10 \][/tex]
2. Quadratic Factorization:
To factorize [tex]\(2u^2 - 9u + 10\)[/tex], we find the roots using the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
- Here, [tex]\(a = 2\)[/tex], [tex]\(b = -9\)[/tex], and [tex]\(c = 10\)[/tex].
3. Calculate the Discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = (-9)^2 - 4 \cdot 2 \cdot 10 \][/tex]
[tex]\[ = 81 - 80 = 1 \][/tex]
4. Find the Roots:
[tex]\[ u_1 = \frac{-(-9) + \sqrt{1}}{2 \cdot 2} = \frac{9 + 1}{4} = \frac{10}{4} = 2.5 \][/tex]
[tex]\[ u_2 = \frac{-(-9) - \sqrt{1}}{2 \cdot 2} = \frac{9 - 1}{4} = \frac{8}{4} = 2 \][/tex]
5. Factor Form:
So, the quadratic [tex]\(2u^2 - 9u + 10\)[/tex] can be factored into:
[tex]\[ 2(u - 2.5)(u - 2) \][/tex]
6. Substitute Back [tex]\(u = (x - y)\)[/tex]:
[tex]\[ 2((x - y) - 2.5)((x - y) - 2) \][/tex]
Therefore, the factorized form of the expression [tex]\(2(x-y)^2 - 9(x-y) + 10\)[/tex] is:
[tex]\[ 2((x-y) - 2.5)((x-y) - 2) \][/tex]
### 7. Set Operations
#### i) List the elements of the sets [tex]\(X\)[/tex], [tex]\(Y\)[/tex], and [tex]\(Z\)[/tex].
- Set [tex]\( X \)[/tex]: Multiples of 2 up to 20.
[tex]\[ X = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\} \][/tex]
- Set [tex]\( Y \)[/tex]: Even numbers up to 10.
[tex]\[ Y = \{2, 4, 6, 8, 10\} \][/tex]
- Set [tex]\( Z \)[/tex]: Factors of 16 greater than 1.
[tex]\[ Z = \{2, 4, 8, 16\} \][/tex]
#### ii) Are the subsets proper and improper? Give Reason.
- Is [tex]\(Y\)[/tex] a subset of [tex]\(X\)[/tex]?
[tex]\[ Y \subseteq X \][/tex]
All elements of [tex]\(Y\)[/tex] are in [tex]\(X\)[/tex]. Therefore, [tex]\(Y\)[/tex] is a subset of [tex]\(X\)[/tex]. Since [tex]\(Y\)[/tex] does not contain all elements of [tex]\(X\)[/tex] and [tex]\(X \neq Y\)[/tex], it is a proper subset.
- Is [tex]\(Z\)[/tex] a subset of [tex]\(X\)[/tex]?
[tex]\[ Z \subseteq X \][/tex]
All elements of [tex]\(Z\)[/tex] are in [tex]\(X\)[/tex]. Therefore, [tex]\(Z\)[/tex] is a subset of [tex]\(X\)[/tex]. Since [tex]\(Z\)[/tex] does not contain all elements of [tex]\(X\)[/tex] and [tex]\(X \neq Z\)[/tex], it is a proper subset.
#### iii) Combine the elements of [tex]\(Y\)[/tex] and [tex]\(Z\)[/tex] and show it in the Venn Diagram along with the universal set.
- Union of [tex]\(Y\)[/tex] and [tex]\(Z\)[/tex]:
[tex]\[ Y \cup Z = \{2, 4, 6, 8, 10, 16\} \][/tex]
- Universal Set:
Let's consider the universal set up to 20:
[tex]\[ \text{Universal Set} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\} \][/tex]
### Venn Diagram
1. Universal Set: [tex]\(\{1, 2, 3, \dots, 20\}\)[/tex]
2. Set [tex]\(X\)[/tex]: [tex]\(\{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}\)[/tex]
3. Set [tex]\(Y\)[/tex]: [tex]\(\{2, 4, 6, 8, 10\}\)[/tex]
4. Set [tex]\(Z\)[/tex]: [tex]\(\{2, 4, 8, 16\}\)[/tex]
5. Union [tex]\(Y \cup Z\)[/tex]: [tex]\(\{2, 4, 6, 8, 10, 16\}\)[/tex]
In a Venn diagram, we can represent the relationship between [tex]\(X\)[/tex], [tex]\(Y\)[/tex], [tex]\(Z\)[/tex], and their union within the universal set:
- [tex]\(X\)[/tex] will encompass all the multiples of 2 up to 20.
- [tex]\(Y\)[/tex] will be within [tex]\(X\)[/tex] containing the smaller set.
- [tex]\(Z\)[/tex] will overlap with [tex]\(Y\)[/tex] since they share common elements.
- Union [tex]\(Y \cup Z\)[/tex] combines both.
Unfortunately, a text-based Venn diagram isn't possible here, but the relationships can be understood from the element descriptions.
### 6. Factorize: [tex]\(2(x-y)^2-9(x-y)+10\)[/tex]
To factorize the given quadratic expression, we will employ substitution to simplify it.
1. Substitution:
Let [tex]\(u = (x - y)\)[/tex]. Then the expression [tex]\(2(x-y)^2 - 9(x-y) + 10\)[/tex] transforms to:
[tex]\[ 2u^2 - 9u + 10 \][/tex]
2. Quadratic Factorization:
To factorize [tex]\(2u^2 - 9u + 10\)[/tex], we find the roots using the quadratic formula:
[tex]\[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
- Here, [tex]\(a = 2\)[/tex], [tex]\(b = -9\)[/tex], and [tex]\(c = 10\)[/tex].
3. Calculate the Discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = (-9)^2 - 4 \cdot 2 \cdot 10 \][/tex]
[tex]\[ = 81 - 80 = 1 \][/tex]
4. Find the Roots:
[tex]\[ u_1 = \frac{-(-9) + \sqrt{1}}{2 \cdot 2} = \frac{9 + 1}{4} = \frac{10}{4} = 2.5 \][/tex]
[tex]\[ u_2 = \frac{-(-9) - \sqrt{1}}{2 \cdot 2} = \frac{9 - 1}{4} = \frac{8}{4} = 2 \][/tex]
5. Factor Form:
So, the quadratic [tex]\(2u^2 - 9u + 10\)[/tex] can be factored into:
[tex]\[ 2(u - 2.5)(u - 2) \][/tex]
6. Substitute Back [tex]\(u = (x - y)\)[/tex]:
[tex]\[ 2((x - y) - 2.5)((x - y) - 2) \][/tex]
Therefore, the factorized form of the expression [tex]\(2(x-y)^2 - 9(x-y) + 10\)[/tex] is:
[tex]\[ 2((x-y) - 2.5)((x-y) - 2) \][/tex]
### 7. Set Operations
#### i) List the elements of the sets [tex]\(X\)[/tex], [tex]\(Y\)[/tex], and [tex]\(Z\)[/tex].
- Set [tex]\( X \)[/tex]: Multiples of 2 up to 20.
[tex]\[ X = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\} \][/tex]
- Set [tex]\( Y \)[/tex]: Even numbers up to 10.
[tex]\[ Y = \{2, 4, 6, 8, 10\} \][/tex]
- Set [tex]\( Z \)[/tex]: Factors of 16 greater than 1.
[tex]\[ Z = \{2, 4, 8, 16\} \][/tex]
#### ii) Are the subsets proper and improper? Give Reason.
- Is [tex]\(Y\)[/tex] a subset of [tex]\(X\)[/tex]?
[tex]\[ Y \subseteq X \][/tex]
All elements of [tex]\(Y\)[/tex] are in [tex]\(X\)[/tex]. Therefore, [tex]\(Y\)[/tex] is a subset of [tex]\(X\)[/tex]. Since [tex]\(Y\)[/tex] does not contain all elements of [tex]\(X\)[/tex] and [tex]\(X \neq Y\)[/tex], it is a proper subset.
- Is [tex]\(Z\)[/tex] a subset of [tex]\(X\)[/tex]?
[tex]\[ Z \subseteq X \][/tex]
All elements of [tex]\(Z\)[/tex] are in [tex]\(X\)[/tex]. Therefore, [tex]\(Z\)[/tex] is a subset of [tex]\(X\)[/tex]. Since [tex]\(Z\)[/tex] does not contain all elements of [tex]\(X\)[/tex] and [tex]\(X \neq Z\)[/tex], it is a proper subset.
#### iii) Combine the elements of [tex]\(Y\)[/tex] and [tex]\(Z\)[/tex] and show it in the Venn Diagram along with the universal set.
- Union of [tex]\(Y\)[/tex] and [tex]\(Z\)[/tex]:
[tex]\[ Y \cup Z = \{2, 4, 6, 8, 10, 16\} \][/tex]
- Universal Set:
Let's consider the universal set up to 20:
[tex]\[ \text{Universal Set} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\} \][/tex]
### Venn Diagram
1. Universal Set: [tex]\(\{1, 2, 3, \dots, 20\}\)[/tex]
2. Set [tex]\(X\)[/tex]: [tex]\(\{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}\)[/tex]
3. Set [tex]\(Y\)[/tex]: [tex]\(\{2, 4, 6, 8, 10\}\)[/tex]
4. Set [tex]\(Z\)[/tex]: [tex]\(\{2, 4, 8, 16\}\)[/tex]
5. Union [tex]\(Y \cup Z\)[/tex]: [tex]\(\{2, 4, 6, 8, 10, 16\}\)[/tex]
In a Venn diagram, we can represent the relationship between [tex]\(X\)[/tex], [tex]\(Y\)[/tex], [tex]\(Z\)[/tex], and their union within the universal set:
- [tex]\(X\)[/tex] will encompass all the multiples of 2 up to 20.
- [tex]\(Y\)[/tex] will be within [tex]\(X\)[/tex] containing the smaller set.
- [tex]\(Z\)[/tex] will overlap with [tex]\(Y\)[/tex] since they share common elements.
- Union [tex]\(Y \cup Z\)[/tex] combines both.
Unfortunately, a text-based Venn diagram isn't possible here, but the relationships can be understood from the element descriptions.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.